
Link Travel Time Prediction from Large Scale Endpoint Data
Sankarshan Mridha, Niloy Ganguly, Sourangshu Bha�acharya

Indian Institute of Technology, Kharagpur
sankarshan@iitkgp.ac.in,[niloy,sourangshu]@cse.iitkgp.ernet.in

ABSTRACT
Existing systems for travel time estimation either use data collected
from loop detectors and probe vehicle locations, or from GPS traces
from cellphones of “online” users. �e former methods of data
acquisition are expensive, while the la�er turns out to be infeasi-
ble in connectivity-poor regions. However, many crowdsourced
taxi trip datasets (from Boston, Beijing, Rome, etc.) are publicly
available which, despite containing limited information, can be
made useful for inferring meaningful insights by certain amount
of data engineering. �e datasets are both cheap to acquire (hence
available in large volumes), and impose less heavy connectivity
requirements on the end user. One such crowdsourced dataset is
the NYC (New York City) Taxi dataset, which contains only the end-
point information for each trip. In this paper, a link (road segment)
travel time estimation algorithm named Least Square Estimation
with Constraint (LSEC) has been developed from such end-point
data, which estimates travel time 20% more accurately than existing
algorithms. �e key idea is to augment a subset of trips with unique
paths using logged distance information, as opposed to ��ing adhoc
“route-choice” models.
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1 INTRODUCTION
Estimation of link travel time [5] is a core problem in transportation
engineering, with applications ranging from detection of tra�c be-
haviour and anomalies at di�erent places and times [3], assessing
and improving overall e�ciency of transportation systems [5], to
the widespread application of route recommendation for individual
users [1], etc. Google Maps1 provides excellent route recommenda-
tion, but relies on users being online for collection of tra�c data;
this is not sustainable in many developing countries, since connec-
tivity is expensive, and not as abundant as in developed countries.
�erefore, a more ideal scenario for any recommendation algorithm
1h�p://maps.google.com
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would be to rely on data collected/released by the vehicles (and not
individuals) plying in the city.

In recent times, several cities around the world have started
online taxi hire companies, such as Uber2, Ola3, etc., which collect
route information. Besides, in many cities, the city administration
makes it mandatory for taxi hiring services to log their trip informa-
tion. �ese taxi service organizations are increasingly making their
taxi trip data public (e.g., Uber data4). However, understandably due
to various constraints such as privacy concerns of the driver and the
passenger, legal issues, business interests, etc., hardly any dataset
contains complete trajectory information. For example, sometimes
trip information is anonymized, or only pickup information is pro-
vided, or no distance information is shared, or exact pickup-dropo�
information is masked. �is trend is more or less common across
taxi trip datasets released from di�erent cities across the world like
Porto, Boston, Chicago, New York, etc.

An important task, therefore, is to devise methods to meaning-
fully mine and utilize these increasingly available but incomplete
trip datasets. In this paper, we speci�cally take up this challenge and
develop a methodology to tackle the situation where entire trajec-
tory information is obfuscated. New York City Taxi and Limousine
Commission5 have freely shared vast amounts of data for about
all taxi trips made in the city recently. �e data however does not
contain routes for trips, but only starting and ending locations and
timestamps along with the total distance travelled, fare, etc., for
each taxi trip. We leverage on the huge amount of data provided to
derive link level information of a large portion of links, and then
use that for travel time estimation between any two given points.
We believe the basic idea of using the abundance of aggregate data
to reconstruct �ne-grained data (which is not available) is a di�erent
outlook as none of the previous travel time estimation algorithms
work on such incomplete data [1, 2, 4, 12].

In order to solve the problem on this dataset, the following steps
are undertaken: (a) We reconstruct the route information from
the (source, destination, distance) data, which is performed by
enhancing the data with OSM6 information; (b) From the route
information, we estimate the travel time for each individual link7;
(c) For any arbitrary route, we predict the travel time by stitching
back the time taken to travel its constituent links

Our framework maps 65.6 million taxi trips in Manha�an in
2014 within 0.1 mile error threshold to unambiguous (unique) paths
(section 2). �e link mean travel time is accordingly estimated using
our LSEC method (section 3), as the path travel time is spatially
distributed over the constituent links of the paths. Results from
experiments (section 4) with link travel time prediction algorithms,
show that mean absolute percentage error (MAPE) for predicted
link travel times is be�er by at least 20% than existing methods.

2h�ps://www.uber.com/
3h�ps://www.olacabs.com/
4h�ps://movement.uber.com/cities
5h�p://www.nyc.gov/html/tlc/html/about/trip record data.shtml
6h�p://www.openstreetmap.org
7A link is a single segment of a road
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Figure 1: (a) Original pickup, dropo� distribution (in white)
and (b) �e constructed full road network for Manhattan.

Related Work: �e two main factors determining systems for
estimation of link travel time are: data sources and the underlying
model. Li [2] uses a linear model to predict travel times from �ow.
Asghari et al. [1] discusses the intrinsic variability in link travel
times and predicts the most reliable route. Both the above works use
data from loop detectors, ANPR, etc. Another set of data sources are
low-frequency GPS probe vehicle data [4], [12]. Zheng et al. [12],
tackle the problem of redistributing travel times to intermediate
links using a black-box neural network model. However, they need
the actual travel times at the training stage which is hard to get for
a large road network. Yuan et al. [9] uses time dependent landmark
based model for estimating time between two landmarks. Rahmani
et al. [4], predict travel times for routes, rather than links, thereby
skipping the intricacies of path time models. [10, 11] try to estimate
distributions of link travel times from the taxi trip data. �ey use
the fare �eld logged in the data to infer the probability of path taken
by a given trip. �ese methods are computationally expensive and
unlikely to be scalable to citywide data. �ey also use EM algorithm,
which only gives a local optimum and hence is prone to di�erences
in initial points. Finally, they [10] estimate negative values for
expected link travel times, which we have veri�ed and compared
their method with our LSEC method (section 4.2). �is is is one of
the reasons behind its inferior performance.

2 DATASET CONSTRUCTION
2.1 Data Sources
NYC taxi dataset: We obtained this data from the New York City
Taxi and Limousine Commission. For this work we have focused
only on Manha�an City and consider only those trips which start
and end inside the Manha�an City itself. A�er initial data prepro-
cessing, cleaning and �ltering, it has 86.1 million valid trips made
in Manha�an for the year 2014. However the trip data doesn’t
provide intermediate route information for any trip. It provides
only the pickup and dropo� coordinates, timestamp along with
total trip distance and duration. We have used only the following
features: pickup and dropo� timestamps, coordinates, trip distance
and duration only.
OSM dataset: While road networks are available for many cities,
from the city corporation or state transportation authorities, very
o�en these networks are incomplete or have missing properties [7].
Following [7], we use data from OpenStreetMap (OSM), which is
an open source collaborative project dedicated to create free and
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Figure 2: CDF shows 99% taxi
OD pairs are mapped to the
closest node within an error
threshold of 0.08 mile.
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Figure 3: CDF shows 76.1%
trips are attributed to unique
paths within 0.1 mile error
threshold.

editable map of the world. We download the OSM data for Man-
ha�an city (longitude range: (−74.02,−73.90) and latitude range:
(40.69, 40.88)) and have created the corresponding road network.
Figure 1 shows the road network for Manha�an city, which has
14886 nodes and 23884 links.

2.2 Mapping Taxi Trip data to Road Network
We use proximity based location mapping to map all the original
location to the closest node (according to Euclidean distance) in the
road network. In the subsequent analysis, the original locations in
the trips data, are replaced with the closest node in the road network.
A total of 7028049 locations (resulting from taxi (pickup,dropo�)
pairs) were mapped to 14886 nodes in the road network. Figure 2
plots the euclidean distance between the original (from NYC taxi
data) and the mapped locations (from OSM data) (x-axis) against the
cumulative fraction of points (y-axis). �is distance measures the
error in the mapping process. We can see that nearly 99% of 7028049
locations are mapped with an error of only 0.08 mile or less. �e
super�cial (extra) nodes in the road network which capture the
curvature of road segments contributed signi�cantly in producing
such highly accurate results.

2.3 Distance based Path Attribution
�e biggest challenge here is that the path taken through the road
network between origin-destination (OD) pairs is not provided.
Recent works [10, 11] use probabilistic models to estimate the prob-
ability of alternative paths being taken. However as mentioned
above, these approaches su�er from many drawbacks, including
arriving at negative link travel time estimates. In this paper, we
take an orthogonal approach of distance based path a�ribution. Our
main idea is to consider trips which matches closely (with very low
error) to a unique path. �is leaves us with a dataset of trips which
can be a�ributed to unique paths with low error.

We generate k-shortest paths between each OD pair using Yen’s
k-shortest path algorithm [8], taking k = 50. For each path, the
distance as measured as sum of distances of the links from road
network. �e distances of all paths are then clustered into dis-
tance buckets. If multiple paths fall inside same distance bucket
for an OD pair then we call them ambiguous. Next we extract the
non-ambiguous path set for each OD pair. Finally the algorithm
returns the path from non-ambiguous path set which has the closest
distance to the trip distance for the OD pair.

We applied the above algorithm for a�ributing paths to the
taxi-trip data �ltered to Manha�an area. Note that the algorithm
a�ributes paths to all trips, unless the corresponding OD pair has
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no non-ambiguous path. Figure 3 plots the cdf for errors (in mile)
computed in the a�ributed paths. We can see that a large fraction
of trips are a�ributed paths within an error of 0.1 mile, a�er which
the rise in fraction of trips tapers o� and the error in a�ribution
increases. We choose 0.1 mile as the error threshold. 65.6 million
trips, out of a total of 86.1 million trips in the Manha�an area, lie
within an error threshold of 0.1 miles (retention of 76.1%). We
consider this �ltered and path a�ributed set of trip as our route
annotated data. We use this data for link travel time estimation in
sections 3.

3 LINK TRAVEL TIME ESTIMATION
Let G = (V ,E) denote the road network, where V is the set of all
nodes which are the origin and destination points of various trips,
E ⊆ V ×V is the set of all road links in the network. We assume
a directed graph with e = (v1,v2) implying that tra�c can �ow
from v1 to v2. A path p is an ordered list of nodes (Vp ) such that
(vi−1,vi ) ∈ E,∀i . Equivalently, it can also be thought of as a list
of links (Ep ) such that if ei−1 = (ui−1,vi−1) and ei = (ui ,vi ), then
ui = vi−1,∀i = 1, . . . ,M , where M is the total number of links in
the road network. Our processed NYC trips dataset D obtained in
section 2, can be described as a collection of paths pi along with trip
travel timeTi , ∀i = 1, . . . ,N , where N is the total number of of trips.
Note that a given path pi may have multiple trips. Hence, we can
compute the mean travel time T̄p for a pathp as T̄p = 1

Np

∑
i :pi=p Ti ,

where Np is the number of trips through path p.
In order to estimate link travel times, we formulate a proba-

bilistic model for trip travel times. Let Xk ,k = 1, . . . ,M denote
the random variables capturing travel times for the kth link. Note
that this model is for weekday/weekend and an hour of the day.
Also, let Tp be the random variable denoting travel time for path
p. We formulate the model as ∑k ∈p Xk = Tp + ϵ , where ϵ is a zero
mean Gaussian noise. �is is a simpli�ed model, which ignores
waiting time at the nodes. Taking expectation w.r.t. all random vari-
ables Xk and noting that xk = E[Xk ] and T̄p = EX [Tp ] we write∑
k ∈p xk = T̄p +ϵ . �e assumption here is that the noise corrupting

the observation of average path travel time T̄p is independent of the
path p and zero mean Gaussian. We also assume the various trip
travel times Ti are due to variation in link travel times Xk . Hence,
the average of trip travel times T̄p for a path p can be used as a
plug-in estimate for EX [Tp ].

With this model, and the data for path travel times {T̄1, . . . , T̄N },
we can write the above equations in a compact form asAx = T̄ +ϵ1,
where x = [x1, . . . ,xM ]T , T̄ =

[
T̄1, . . . , T̄N

]T , and 1 is the vector
of all ones. AM×N is a coe�cient matrix, where Aik = 1 if ith
link is a part of kth path, Aik = 0 otherwise. We use maximum
likelihood paradigm to estimate the mean link travel times xk . �is
leads to the least squares problem:

x∗ = arg min
x
‖Ax − T̄‖2 (1)

We call this the least-square estimate (LSE) for link travel times.
A problem with this formulation is that the optimal mean link

travel time estimates x∗k can be negative. �is is because ∑k ∈p xk
can be positive, even though the individual xk are not all positive.
Hence, we impose the further constraint that xk ≥ 0,∀k = 1, . . . ,M .
�e �nal estimation problem becomes:

x∗ = argmin
x

‖ Ax̂ − T̄ ‖2 s.t x ≥ 0 (2)

We call this the least-squares estimation with constraints (LSEC).
Note that this is an instance of non-negative least squares problem
[6], which is a convex optimization problem, and can be solved
using many e�cient algorithms.

4 EXPERIMENTAL RESULTS
4.1 Setup
Baseline methods: PPE [10], assumes a linear model for fare in
terms of distance and time, and tries to �t the coe�cients using least
squares regression. �ey assume a multinomial logistic regression
model for route probabilities in terms of distance and time, using
the ��ed coe�cients. Using the path probability, they compute
expected travel time, which is matched to actual travel time for a
non-linear least squares ��ing. Our second baseline is basically
the naive least squares estimation based algorithm LSE without
positivity constraints on estimated links as described in Section 3,
equation (1). While PPE needs the trip duration, distance and fare
information, LSE and LSEC need trip duration and distance along
with a�ributed paths.
One week dataset: Since optimization suggested in [10], uses
the Jacobian matrix which is O ( |E |2), PPE cannot be run on the
entire road network. Hence, following [10], we select a smaller
region of Manha�an City with 1829 nodes and 2334 road links for
baseline comparison. Next we construct a smaller taxi trip dataset
for running their algorithm. While the authors have used single
week’s data for the year 2010 we have used it for year 2014. �ey
used the trip data from 3/15/2010 to 3/21/2010 where as we use our
path a�ributed taxi trip data from 3/15/2014 to 3/21/2014 whose
pickup and dropo� fall into test region and got total 155601 trips
for these seven days period.
Experimental procedure: We compared with baseline using one
week dataset (section 4.2) and validated the performance of our
method on the entire 2014 dataset separately (section 4.3). We
randomly select (80%) training and (20%) test set data and evaluation
was done on test set data. All the work has been performed on
machine having 48 CPU (Intel(R) Xeon(R) CPU, E5 − 2697 v2 @
2.70GHz), RAM 256 GB. Distance based path matching took roughly
∼ 10−3 seconds per trip. For the road network with 23884 link, our
LSEC takes on an average ∼ 0.60 seconds per link for link mean
and variance in travel time estimation.

4.2 Baseline Comparison on 1-week Data
Table 1 shows root mean square error (RMSE) and mean absolute
percentage error (MAPE) for link travel time estimated by LSEC,
LSE and PPE for four di�erent time of the day 6:00 am (6), 10:00 am
(10), 4:00 pm (16), and 8:00 pm (20). We note that LSEC performs
nearly similar to LSE while it performs much be�er than PPE, both
in terms of RMSE and MAPE. We observe, RMSE is higher for rush
hours 10 and 16 when the average trip duration per mile (TDM)
is higher. While for hour 6 and 20 the error is comparatively low.
�e approach proposed in PPE su�ers from several problems. First,
linear relationship between fare distance and time could not be
veri�ed for the full one year dataset (they verify it with trip data of
seven days spanned over a very small part of Manha�an). Second,
it assumes that probability of following a path is related to the fare,
which is not veri�ed for larger city wide dataset. �ird, the approach
is computationally very expensive as it maintains probabilities for
top-k paths for all trips, and hence could not be applied to the entire
dataset.
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Hour PPE LSE LSEC
RMSE

(minute)
MAPE
(%)

RMSE
(minute)

MAPE
(%)

RMSE
(minute)

MAPE
(%)

6 1.56 25.68 1.13 20.14 1.12 19.15
10 3.09 29.25 2.53 22.21 2.26 21.57
16 2.71 30.16 2.29 23.34 2.12 22.26
20 1.76 26.28 1.33 20.43 1.29 20.12

Table 1: Comparison ofmethod LSECwith baseline PPE and
LSE. LSEC is showing good progress over PPE in terms of
both RMSE and MAPE.

Hour 6 10 16 20
(%) of -ve
Link time

PPE 23.73 24.25 27.97 24.29
LSE 12.12 15.81 14.65 13.24

Table 2: Comparison of percentage (%) negative link be-
tween PPE and LSE. For each of the hours CDF of LSE is al-
ways lower than that of PPE.
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Figure 4: Comparison of frequency distribution of esti-
mated negative links for PPE and LSE for di�erent hours
of the day.

Hour Day
Type

Path Mean Time Estimation TCMAPE
(%)

RMSE
(min)

PC
(TC>0)

LC
(%)

6 W 19.10 1.57 120640 77.06 1434065
10 W 23.00 3.36 372090 79.57 3166472
16 W 23.34 3.37 316246 80.96 2503511
20 W 19.62 2.27 534513 84.61 3639485
6 NW 21.23 1.47 57457 73.56 184571
10 NW 20.10 2.14 221421 78.57 1017649
16 NW 23.68 3.00 229880 80.06 1054417
20 NW 22.51 2.60 228005 81.26 1210975

Table 3: Measuring error in estimation of path mean travel
time for weekdays (W ) and weekends (NW ). It also shows
hourly details about Trip Count (TC), Path Count (PC) for
(TC > 0) during Weekdays (W) and Weekends (NW) and the
corresponding Link Coverage (LC).

E�ect of negative links: A major drawback of both the baselines
is that they have no mechanism to stop estimating negative link
travel times. Table 2 reports the percentage of links with estimated
negative link travel times. We note that both LSE and PPE estimate
a signi�cant percentage of negative links. A further investigation
also shows the correlation between percentage of negative links
and the accuracy of travel time prediction. In �gure 4 we have
plo�ed the CDF of negative links frequency for di�erent hours of
the day for LSE and PPE. We see that the frequency of negative
values estimated by PPE (given by solid lines) is more than those
of LSE (given by do�ed lines), which correlates with the inferior
performance of PPE compared to LSE. Hence, we conclude that one
of the reasons behind the inferior performance of PPE over LSE
(and also LSE over LSEC) is the spurious computation of negative
link travel times.

4.3 Performance of LSEC on 1-year Data
We see in table 3, for estimating path time by our LSEC method,
MAPE value is within 24% - intrinsic variability in the travel time
data is partially responsible for the error. �e undershoot and
overshoot of estimation are roughly in similar proportion. Notice
that although the MAPE is slightly worse in the weekend than the
weekdays, the RMSE shows opposite behaviour because the car
speed is higher in weekend (people reach their destination faster).
Hence although the percentage error is high, the absolute mismatch
with respect to time is low. �e table also shows the number of
estimated links over Manha�an city - the experiment covers. It
is nearly 80% and 78% for weekdays and weekends respectively,
clearly signifying the scale of our experiment.

5 CONCLUSION
�e primary contribution of this paper is to demonstrate a simple
yet e�ective framework, to calculate mean travel time for each link
in a map, using LSEC. �is is achieved on a large historical taxi trip
dataset, which contains only the end point information for each trip.
�e paper shows that using a road network, and a simple concept
of non-ambiguous shortest paths, we can reconstruct routes and
estimate travel time on a city-wide scale, which none of the existing
research systems do. �e percentage of links whose mean could be
calculated, is around 80%. We believe the coverage would increase
further if we work with more data. A simple way to enhance data
would be to consider data from all seven years (2009 - 2015) together,
which is a future work. Finally, we plan to make the annotated
(with derived route information) NYC taxi data public for future
research endeavours.
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