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ABSTRACT

Today’s urban lifestyle mandates reliable traffic estimates, allowing citizens to

make productive use of their time. However, achieving accurate traffic estimates

is rendered difficult, in the presence of unprecedented traffic situations and sudden

disruptions on routes. Existing techniques for travel time estimation either rely on

data collected from loop detectors or from GPS traces of ‘online’ users; while the

former strategy is expensive, the latter is infeasible in regions with poor connectiv-

ity. In this thesis, our goal is to utilize publicly available crowdsourced datasets,

with limited information, to accurately perform traffic estimates. Our solutions

include providing robust travel time estimates, as well as identifying traffic trend-

shifts in response to sudden disruptions.

The first task undertaken in this thesis is travel time estimation supplemented

with reliability measures for routes in the road network. A route is deemed reliable

when its travel time variation is low – this is desirable for many travellers who do

not mind taking a slightly longer route (than the shortest one) but are guaranteed

to reach within a stipulated time duration. In a departure from existing works,

we utilize public crowdsourced datasets, carrying limited information, and perform

extensive data engineering to accurately estimate travel time.

In the subsequent task, we attempt to learn how dynamic traffic demands on one

road link affect traffic demands in other links, thereby impacting travel time heavily.

Recent works assume that the travel time of a link is spatially correlated only with

its neighbouring links within a local area, which is not the case always. Instead, we

propose a method which does away with such proximity constraints, and explore

the correlations of travel times on different links of an area.



xiv

In our final task, we strive to analyze the effects of sudden closure of road-

links, due to events such as parades, carnivals, road maintenance activities, etc.

The resulting deviation from regular traffic patterns manifests in change of pickup

locations for different public transport machineries, such as the yellow taxi, causing

inconvenience to drivers and passengers alike. Such occurrences motivate us to

predict the new pickup locations due to disruption of a road-link, thereby benefitting

both parties.

In summary, this thesis endeavours to accurately estimate travel durations and

their correlations, from publicly-available crowdsourced data, and to predict geo-

graphical shifts in passenger pickup locations in response to link disruptions.

Keywords: Spatio-temporal data mining, Travel time estimation, Path certainty

estimation, Route recommendation, Taxi pickup hotspot prediction, Hotspot relo-

cation.
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Chapter 1

Introduction

“You can’t understand a city without

using its public transportation system.”
— Erol Ozan, Talus

Public transport is the lifeline of a modern urban society: a healthy public transport

system demands that citizens be accurately and dynamically informed about travel dura-

tions and changes in transport dynamics. Real-time travel information enables citizens

to undertake well-planned, hassle-free journeys, allowing them to make productive use of

their valuable time. However, accurate travel estimates are difficult to achieve in a rapidly

evolving traffic system, where traffic demands are incessantly changing and road link dis-

ruptions are sudden. Existing strategies for travel time estimation and traffic dynamics

prediction either rely on data collected using advanced machineries such as loop detectors

and probe vehicles, or GPS traces aggregated from the cellular phones of ‘online’ users.

However, both these strategies suffer from their fair share of limitations: while the former

strategy is expensive, the latter is impractical in zones with poor internet connectivity. In

this thesis, we leverage on publicly available crowdsourced datasets to estimate travel du-

rations. Furthermore, we observe that local events such as carnivals, road-shows, prides,

rallies, construction works, etc. often lead to sudden closures of road links, which lead to

geographical shifts of pickup points for public transport. Employing extensive data engi-

neering techniques on the available datasets, we predict these shifts in advance, such that

1



2 Chapter 1 Introduction

consumers and service providers are equally benefited.

1.1 Motivation

For any transportation network, road intersections and road links (segments) are the key

observation points. Because the behaviour of traffic depends on how the congestion flows

in the links, how the traffic gets delayed in the road intersections, how the traffic in one

link affects the other links and so on. Therefore, in this work one primary focus is to study

these links and their correlations for a better understanding of travel time distribution in

the road network. Now estimation of link travel time [12, 44, 49, 55] is a core problem

in transportation engineering, with applications ranging from route recommendation for

the individual users [3, 22, 28], detection of traffic behaviour and anomalies at different

places and times [2, 10, 35], assessing and improving overall efficiency of transportation

systems [44], etc. Further, to understand the traffic pattern, congestion behaviour and their

correlation with other external factors like weather condition, the transportation network

has also been augmented with other type of heterogeneous information source like online

social network [38, 52], weather data, humidity sensors [57, 60] etc. Useful urban traffic

related posts from Facebook [38], spatio-temporal tweet feed from Twitter [52] have been

used to predict traffic related incidents. Now estimation of link travel time often leads

to the search of efficient route finding. Currently Google Maps provides excellent route

navigation system, but relies on users being online, for collection of traffic data. This is

not sustainable in many developing countries, since Internet connectivity is expensive and

not as ubiquitous as the developed countries, leading to google maps announcing offline

mode1. However, in recent times, many of these places are getting partially connected with

many online taxi hire companies, such as Uber2, Ola3 etc., which store at least pickup and

dropoff locations of each taxi trips. Estimating link travel times, learning link correlations,

understanding traffic behaviour around a closed link from such trip end-point data can po-

tentially lead to a more sustainable travel time estimation technique and traffic behaviour

analysis for connectivity-poor regions.

1http://www.digitaltrends.com/mobile/google-maps-youtube-offline-news/
2https://www.uber.com/
3https://www.olacabs.com/
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1.1.1 Need for understanding transportation network
from crowdsourced data

Traffic in the transportation network heavily influences the travel time from origin to des-

tination. Existing systems for travel time estimation either use data collected from loop

detectors [3, 26] and probe vehicle locations [41, 64], or from GPS traces from cellphones

of online users (e.g. GoogleMaps4). The former methods of data acquisition are expensive,

while the latter turn out to be infeasible in connectivity-poor regions. But in recent times,

several cities around the world have started online taxi hire companies, such as Uber, Ola,

etc., which collect route information. Besides, in many cities, the city administration makes

it mandatory for taxi hiring services to log their trip information. These taxi service orga-

nizations are increasingly making their taxi trip data public (e.g., Uber data5). However,

understandably due to various constraints such as privacy concerns of the driver and the

passenger, legal issues, business interests, etc., hardly any dataset contains complete trajec-

tory information. For example, sometimes trip information is anonymized, or only pickup

information is provided, or no distance information is shared, or exact pickup-dropoff in-

formation is masked. But despite containing limited information, they are sufficient for

inferring meaningful insights after thorough data engineering. The datasets are both cheap

to acquire (hence available in large volumes), and impose less heavy connectivity require-

ments on the end users.

In many countries, the city authorities have made the transportation data public. First is

Porto Taxi Dataset6 which contains intermediate trajectory information at a regular interval

of 15 seconds for the taxi trip in Porto City. The data confirms only the pickup information

and doesn’t share the total duration for each trip [32]. Second is Boston Taxi Dataset7. This

seven months data contains only pickup, dropoff co-ordinates and timestamps but no other

information. Then there is Bejing Taxi Dataset8, Rome taxi dataset9, SFMTA data10 from

4https://maps.google.com/
5https://movement.uber.com/cities
6http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
7https://data.cityofboston.gov/Transportation/Boston-Taxi-Data/ypqb-henq
8http://sensor.ee.tsinghua.edu.cn/datasets.html
9http://crawdad.org/roma/taxi/20140717/

10ftp://avl-data.sfmta.com/avl data/avl raw
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San Francisco Municipal Transportation Agency (SFMTA) and San Francisco taxi data11.

These datasets contain taxi coordinates at regular interval of time along with timestamps.

However, to maintain privacy, they never specify which of the coordinates are pickup and/or

dropoff. Thus it provides only the taxi footprint but no trip level information. Then there

is Bike trip Data from Washington DC12, New York City13, Chattanooga14 which contains

only the pickup and dropoff information and total duration. But no intermediate trajectory

information and trip distance are provided. Finally there is NYC Taxi data from New York

city Taxi and Limousine Commission which shares only the pickup and dropoff informa-

tion but no intermediate trajectory details. But they share the total trip distance and duration

for each year from 2009. So, there is a large pool of publicly available transportation data,

which if utilized properly can be very economically feasible for this kind of study in the

developing countries. This motivates us towards building some framework for utilizing

these incomplete data and then learn various transportation network problems for inferring

meaningful insights.

1.1.2 Reliability of road links while travelling

The problem of finding the shortest paths in the transportation network has been heavily

investigated [4, 16, 18, 65] due to its wide application in transportation science and other

fields (e.g., route guidance systems, traffic simulations, or logistics optimizations). But the

traffic networks are highly uncertain due to fluctuations in demand and inconsistency in

supply [46]. This results in unstable link travel time estimation [37]. Also it’s not straight-

forward that a shortest distance path will always require least amount of time to travel. On

the contrary, it’s very intuitive that if multiple paths exist between an origin destination pair

OD, then there are high chances that most people will follow the shortest distance path – re-

sulting higher congestion, hence higher fluctuation in travel time. So if a person has a hard

deadline (e.g. to catch a flight, train etc.) to meet, then she should either avoid paths with

high fluctuation or start early considering worst case scenario. A relatively longer distance

path may invite lesser traffic and thus may have lesser fluctuation in travel time. Conse-

11http://crawdad.org/epfl/mobility/20090224/
12https://www.capitalbikeshare.com/system-data
13https://www.citibikenyc.com/system-data
14http://bit.ly/2kTb7tJ
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quently, its worst case behaviour may be better than that of the shortest path. Therefore,

in order to develop a route planner, besides having an estimation of average travel time,

assessment of its variation is also a necessity. This motivates us to investigate the variation

in travel time of constituent links of the path apart from understanding the average link

travel time during different hours of the day.

1.1.3 Correlation of road links during traffic

The spread of road traffic in urban area follows a complex pattern. Congestion in one link

may quickly unsettle nearby or sometime distant regions – resulting in inconvenience to

the city people. Therefore an interesting problem is to investigate the geographical range

of influence of traffic occurring at a transportation network. More precisely, the motivation

is to understand how the link behaves – their correlation with each other during traffic. Un-

derstanding the travel time correlation between the links has its own importance. It helps to

detect anomalies in traffic behaviour in a spatio-temporal setting [35] and thus improving

the overall efficiency of the transportation system [44]. Till now the study of the interde-

pendence of link travel time assumes that the links effect only the nearby links [33, 34] or

they are restricted to a local area [11]. However, it is often found that in city area long

range correlations exist. That is, congestion in one part of the city adversely affect another

remote locality - identification of this may be important for various city planning related

applications. Therefore, a modelling paradigm which will not be restricted to the locality

of the correlation assumption is a necessity.

1.1.4 Effect of disruption in transportation network

The behaviour of traffic changes dramatically if a thoroughfare is closed. Within a city,

an experienced taxi driver can envisage the probable passenger pickup locations and sub-

sequently from collective experience, taxi pickup hotspot emerge. The city residents also

identify these locations ensuring an organic reinforcement. The hotspots in turn induces

certain trajectories which the drivers follow regularly. However, the trajectories and conse-

quently the hot spots may get shifted if there is any disruption on a road segment due to any
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natural (e.g. snowfall, heavy shower etc.) or man made (e.g. parade, protest march etc.)

event. Sometimes a regular hotspot may lose its existence and a new hotspot may appear

into the city. Also these new hotspots may be far away from the regular ones – causing trou-

ble to both the passengers and the drivers as they may not have prior information regarding

this change. This motivates to investigate this interesting problem of predicting the change

in hotspots, which if known, would be useful for both the passengers and the taxi drivers.

1.2 Objectives of the thesis

The objectives of the thesis are to learn how travel time is distributed over individual links,

their correlations with each other and geographical change in traffic trends during sudden

link disruptions. More specifically, we tackle the following three aspects.

• How path travel time is distributed over intermediate links: Travel time is heavily in-

fluenced by the imbalanced traffic congestion in the road network. This results in the

non uniform distribution of the path travel time over the constituent links. The pri-

mary objective is to estimate the average link travel time and its variance. Followed

by which we try to recommend the path with maximum reliability or minimum vari-

ance in travel time.

• How link travel time is correlated with each other: Due to fluctuations in demand and

supply in different road links, the congestion in one link may influence (positively or

negatively) the congestion in other links. Therefore, the next objective of the thesis

is to analyze the correlation of road links while learning the travel time distribution

of the links in the road network. We further explore the long range link correlations

without putting any proximity constraints.

• How traffic pattern changes geographically during link disruptions: Our final objec-

tive of the thesis is to learn the geographical change in traffic pattern when a particular

road link is closed due to various reasons like parade, carnival, road maintenance etc.

Here we investigate how the popular passenger pickup locations for public transport

like yellow taxi are changed due to disturbance in traffic pattern due to link disrup-

tions.
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1.3 Contributions of the thesis

The primary focus of the thesis is to devise a framework to investigate the transportation

network using crowdsourced traffic data. The thesis focusses on estimatation of average

link travel time, the correlation in travel time among various links and also the geographi-

cal change in traffic patten during sudden link disruptions.

The three salient contributions of the thesis are as follows:

• Link travel time prediction and route recommendation.

• Estimation of covariance in link travel time.

• Prediction of taxi pickup hotspots during road closure activities.

1.3.1 Link travel time prediction and route recommendation

Existing systems for travel time estimation either use sophisticated machineries like loop

detectors and probe vehicles, or from GPS traces from cellphones of “online” users. The

former methods of data acquisition are expensive, while the latter turn out to be infeasible

in regions with poor connectivity. However, many crowdsourced taxi trip datasets (from

Boston, Beijing, Rome, etc.) are publicly available which, despite containing limited infor-

mation, are sufficient for inferring meaningful traffic insights after thorough data engineer-

ing. The datasets are both cheap to acquire (hence available in large volumes), and impose

less heavy connectivity requirements on the end user. One such crowdsourced dataset is the

NYC (New York City) Taxi dataset, which contains only the end-point (pickup and dropoff)

information for each trip. Figure 1.1(a) shows the taxi pickup, dropoff density (white part)

in Manhattan city and figure 1.1(b) shows the corresponding road network. In this work,

we develop a link travel time estimation algorithm from such end-point data. The key idea

is to augment a subset of trips with unique paths using logged distance information, as

opposed to fitting adhoc “route-choice” models. Also a route recommendation system is

built using the estimated link travel times and is compared with existing commercial and

state-of-the-art systems with encouraging results.
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(a) (b)

Figure 1.1: (a) Original pickup, dropoff distribution (white part) across Manhattan (b)
Constructed full road network for Manhattan

Link Travel Time Estimation

LetG = (V,E) denote the road network, where V is the set of all nodes which are the origin

and destination points of various trips, E ⊆ V ×V is the set of all road links in the network.

We assume a directed graph with e = (v1, v2) implying that traffic can flow from v1 to v2.

A path p is an ordered list of nodes (Vp) such that (vi−1, vi) ∈ E,∀i. The Manhattan ground

truth trips dataset D can be described as a collection of paths pi along with trip travel time

Ti, ∀i = 1, . . . , N , where N is the total number of trips. Note that a given path pi may have

multiple trips. Hence, we can compute the mean travel time T̄p and variance Sp for a path p.

In order to estimate link travel times, we formulate a probabilistic model for trip travel

times. Let Xk, k = 1, . . . ,M denote the random variables capturing travel times for the kth

link and xk = E[Xk]. Note that this model is separately built for weekday/weekend and for

each hour of those days. Also, let Tp be the random variable denoting travel time for path

p and T̄p = EX [Tp]. First we formulate the general model:
∑

k∈pXk = Tp + η where, η is

a Gaussian noise with mean ε close to 0 and variance σ2. Then taking expectation on both

side it becomes

Ax = T̄ + ε1 (1.1)

where x = [x1, . . . , xM ]T , T̄ =
[
T̄1, . . . , T̄N

]T , ε is the mean of the Gaussian noise, and 1

is the vector of all ones. AN×M is a coefficient matrix, where Aki = 1 if ith link is a part of
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kth path, Aki = 0 otherwise. We use maximum likelihood paradigm to estimate the mean

link travel times xk, with an additional constraint that xk ≥ 0,∀k = 1, . . . ,M as travel

time can’t be negative. The estimation problem then can be formulated as:

x∗ = argmin
x

‖ Ax̂− T̄ ‖2 s.t x ≥ 0 (1.2)

which is a least-squares estimation with constraints (LSEC). Note that this non-negative

least squares problem [51] is a convex optimization problem, and can be solved using

many efficient algorithms.

Variance in Link Travel Time Estimation

The general model described earlier can be written in a compact form as: AX = T + η1

where T = [T1, . . . , TN ]T . Taking co-variance on both sides of the compact form, and

assuming that the noise ε is independent of T and independent of each other, we get:

AΣXA
T = ΣT + σ2I (1.3)

where, ΣX and ΣT are covariances of X and T respectively and σ2 is the variance of the

Gaussian noise. Since both the matrices are very large to compute for our application,

we assume that traffic in different links are independent of each other – all components

of X and T are uncorrelated, resulting all the off-diagonal elements reduced to zero and

the equation 1.3 becomes As = S + σ21 where s and S are the diagonals of ΣX and

ΣT respectively. Here, we also assume that only variance of path travel times are used for

estimation of s. Since we are interested in finding s for the minimum variance in the noise,

i.e. minimum σ2, we get the following non-negative least-squared problem:

s∗ = argmin
s
‖ Aŝ− S ‖2 s.t s ≥ 0 (1.4)

confirming the positivity constraint of the variance. We call this method Independent Link

Variance (ILV) estimation. Also equations 4.4 and 4.8 are our LSEC methods i.e., least

square estimation with constraints.
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Route Recommendation

We further develop three route recommendation schemes based on (1) shortest distance

(RecDist), (2) minimum expected travel duration (RecDur), and (3) minimum variance or

most certain (reliable) route (RecCert); and compare them with Google Maps, Waze and

most frequent path (MFP) [29]. The comparison shows that although distances and travel

times for all the techniques are close, the actual paths proposed are significantly different.

We see that if user chooses most certain path (using RecCert) then on an average, she needs

to travel 0.09 mile more than the path recommended by RecDist, and she needs 0.32 min-

utes longer than the path suggested by RecDur. It also indicates that the average speed on

the path recommended by RecCert is only 0.16 mile/hour shorter than that of the average

speed on the path suggested by RecDur. Hence, it concludes that there is not much penalty

(on an average) in choosing a more certain path.

1.3.2 Estimation of covariance in link travel time

Dynamic traffic demands result in change in travel time in different road links - causing

heavy penalty on the transportation system. Often such changes lead to spread in conges-

tion to adjacent as well as remote zones to the epicentre. Recent works assume that the

travel time of a link is spatially correlated only with it’s neighbouring links within a local

area, which is not true in many practical scenario. Therefore, in this work a new method

is proposed which doesn’t put such proximity constraint and explore the method for es-

timating the covariance in link travel time using the path travel time from crowdsourced

taxi trip data. Experiments show that our Dependent Link Variance (DLV) model is better

by at least 12% than the baseline model. Our DLV model also predicts the impactful road

links within an average error radius of∼ 0.14 mile and discovers correlated links which are

more than 1.5 miles apart. Under the influence of city events, our model is able to predict

the most affected paths within an average accuracy of 76.5%.
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Dependent Link Variance Model

Our DLV method is extended from our previous work where we assume that traffic in dif-

ferent links are independent of each other. But in this work we build DLV method where we

relax this assumption and take a more generic approach – traffic in different links are cor-

related. Therefore, from equation 1.3 in our previous work, we try to estimate ΣX i.e., link

covariance matrix directly without any simplifying assumption. So in this work, our final

objective becomes, given a ΣT for the path covariance matrix, estimate the link covariance

ΣX using the least square formulation:

minimize
ΣX

‖A(ΣX)AT − ΣT‖2
F

subject to ΣX � 0 (1.5)

This problem is an instance of convex semidefinite program [7], where the constraint en-

sures semidefiniteness of the link covariance matrix ΣX . Unfortunately, storing ΣT , which

isN×N dense matrix, requires exorbitant storage in the current scenario whereN ∼ 10M .

Hence, solving the above problem directly is not possible, even with very high memory ma-

chines.

If the matrix ATA is invertible, we can also write equation 1.3 as:

ΣX = (ATA)−1ATΣTA(ATA)−1 + σ2(ATA)−1 (1.6)

Here note that the matrix ATA stores the counts of common paths between links, i.e.

(ATA)i,j = number of common paths between links i and j. Hence, it is expected that

ATA is a sparse matrix. We can assume that variance in noise is negligible (σ → 0).

Therefore, the final equation becomes

ΣX = (ATA)−1ATΣTA(ATA)−1 (1.7)

We call this our Dependent Link Variance (DLV) model. However, the above covari-

ance function is not expected to be sparse. This has the problem of not finding important

correlations which can be found using sparse inverse covariance estimation problem [17].
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The sparse inverse covariance matrix W , can be estimated as:

min
W

log |W | − Tr(WΣx)− λ‖W‖1 (1.8)

1.3.3 Prediction of taxi pickup hotspots during road closure incidents

In large cities taxi services normally maintain hotspots; these are either city-specified taxi

stands or certain spots which have evolved over time. The knowledge of hotspots helps

daily/experienced commuters to quickly and easily avail taxi service. Such hotspots may

get severely disturbed during a road blockage (e.g. closure due to maintenance) around that

area whereby taxis dynamically build new hotspots. These new hotspots may be far away

from older hotspots, hence causing inconvenience to the commuters as well as resulting in

loss of business and time of taxi drivers. A service which can predict the new hotspots and

accordingly suggest its users to the most convenient new hotspot would be of tremendous

value to both experienced and new commuters.

In order for the scheme to be successful certain conditions need to be fulfilled. First,

one needs an automatic technique to identify such events, road activities causing the change

in hotspots. Luckily nowadays information of such events widely get publicized in on-

line social network. Therefore, we need to develop a scheme to identify them from the

million other non-relevant information and accurately pinpoint the events, correct loca-

tion. Second, in order to predict (change in) hotspots, one needs historical information of

hotspots, not only the location but also their strength – how many pickup has been done

from these hotspots. Fortunately this pickup information is available from various trans-

portation datasets from different cities across the world like, Porto, Boston, Chicago, New

York, etc., where these datasets are made public either by the city authority or by taxi hiring

company (e.g. Uber15) from which hotspot learning is becoming possible.

In this work, we concentrate our study on New York City. This is because both disrup-

tion information as well as taxi hotspot information are available for this region. Moreover,

on studying, it is found that there is significant ‘movement of hotspots’ during any dis-

turbance. The New York City Department of Transportation (twitter handle: NYC DOT)

15https://movement.uber.com/cities
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regularly post tweets about various events in New York, out of which road maintenance,

bridge closure is also announced. Next the New York City Taxi and Limousine Commis-

sion routinely releases information regarding trips of yellow taxi, their pick-up and drop-off

points from which one can calculate the hotspots in the city.

Our observation shows ∼ 40.47% repetition in geographic locations, where various

road closure incidents take place, between year 2015 and 2016 in New York City. This

clearly indicates that same location has been affected over the years and motivates us for

hotspot prediction around the event location. To build the knowledge base, first we con-

struct a classifier with an average accuracy of ∼ 94.55% for identifying the relevant tweets

having different road closure information. Next we extract the date, time and location in-

formation from those tweets and build our knowledge base. Second, leveraging the inferred

knowledge, prediction of taxi pickup hotspot is done, near the activity location, with an av-

erage accuracy of ∼ 86.04%, where the predicted locations are within an average radius of

only 0.011 mile from the original hotspots.

1.4 Organization of the Thesis

• Chapter 1 introduces the basic motivation behind the work and presents an overview.

The organization of the thesis is also elaborated here.

• Chapter 2 presents a detailed literature survey of the related works (primarily from

works in transportation network literature) on (a). different methods for link travel

time prediction, (b). correlation estimation in link travel time, (c). change of traffic

patterns during sudden road closure.

• Chapter 3 presents methods to estimate link travel time and understand the reliabil-

ity of a route in transportation network. It explains whether a shortest length path will

always be the most reliable path or not. It also advises people regarding goodness of

a path in terms of the path distance, duration and path certainty.

• Chapter 4 depicts method for estimating the correlation in link travel time of city

traffic – which is a key step in understanding how different road links impact each

other. It also helps to understand the long range link correlations in travel time.
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• Chapter 5 describes methods for learning the geographical change in popular taxi

pickup hotspots during various link disruption activity in the city. Online social

network data along with transportation data is used to understand and predict such

changes.

• Chapter 6 finally concludes the thesis by summarizing all the works along with some

possible scopes and extensions that can be drawn from the thesis.



Chapter 2

Related Works

The main areas of study in this thesis are: (1) how travel durations are distributed over

road links, (2) the most reliable paths through a transportation network through traffic con-

gestion, and (3) how traffic behaves during activities which cause road closure. In this

chapter, we present a comprehensive survey of previously published papers related to the

above areas in transportation networks. The organization of the survey is as follows: first

(section 2.1), we present a brief overview of articles which have tried to estimate travel

time in the transportation network under different settings; next, in section 2.3 we discuss

about the papers which aim to figure out various correlations in the transportation network;

finally, in section 2.4 we discuss about how heterogeneous data sources, such as online

social networks and transportation networks, can help to understand traffic patterns, and

present more meaningful insights related to traffic dynamics.

2.1 Travel Time estimation

The two main factors determining systems for estimation of link travel time are: data

sources and the underlying model. One class of data sources includes loop detectors and

automatic vehicle identification methods [3,26,35]. Here a loop detector is an electromag-

netic inductive loop installed on the road to detect vehicle movement. When the motor

15
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vehicle drives over the detector wire loop, the detector senses the metal by its electromag-

netic wave. This can be used to determine the count as well as instantaneous velocity of

the vehicles crossing it.

Li et al. [26] uses a linear model to predict travel times from flow. They assumed that

travel time will be directly related to the traffic flow of the road network and consider a

liner model using this flow. Asghari et al. [3] discusses the intrinsic variability in link

travel times and predicts the most reliable route. They use the idea of probabilistic link

travel time (pltt). They define it as follows: In a road network for every link l, the pltt is

defined as the probability of taking x seconds for a vehicle to travel link l starting at time

t. Pan et al. [35] does a speed prediction of vehicle using the sensor (loop detector) data.

Where given a set of observed speed reading, they try to predict the speed for a short and

long rage prediction horizon. They have combined the historical average model (HAL)

with the Auto Regressive Integrated Moving Average (ARIMA) and proposed H-ARIMA

using historical traffic pattern and current traffic speed.

Another set of data sources are low-frequency GPS probe vehicle data [41, 58, 64].

Here, GPS (global positioning system) is installed in the vehicle and it sends its current co-

ordinate and timestamp to the server at a regular interval of time. Thus it creates a footprint

for the vehicle with timestamp. Therefore, installing GPS in multiple vehicles, different

observations of travel time for different road segments can be obtained and can be anal-

ysed for travel time prediction task. Zheng et al. [64], uses the Artificial Neural Network

(ANN) model to estimate travel time. Here vehicle position, timestamp and speed are given

as input to the model. However traffic flow information and signal timing are considered

optionally as they were not available always. Rahmani et al. [41], predict travel times for

routes, rather than links, thereby skipping the intricacies of path time models. They have

used non-parametric kernel based approach for predicting the travel time for routes. Next

Wang et al. [58] models the travel time of the drivers in different time points with three di-

mensional tensor. They fill in the missing values of the tensor from different contexts (like

geospatial, temporal, historical) learned from trajectories and the map data. Ma et al. [30]

estimates the probability distribution of trip travel times for an arbitrary OD pair at an arbi-

trary time given a set of probability distributions of link travel times. They use generalized

Markov Chain approach, incorporating the conditional dependence of link travel times in

the model formulation.



2.2 Route Recommendation 17

The main drawbacks of above mentioned data sources are that they are expensive to

acquire since we need logistics and infrastructures for installing the loop detectors, GPS

etc. Recently, many taxi hiring services like Uber, Ola, Lyft, etc., have come up, which

track locations of their taxis in real time, through GPS, for scheduling customer pickups.

Also different city authorities like Porto, Beijing, Boston, New York City, etc., have made

their taxi data public for analysis with some anonymization for privacy preserving of their

customer. This third kind of data source is cheap and easily available. Recently authors

have started using these data sources for travel time estimation. [62, 63] try to estimate

distributions of link travel times from this kind of crowdsourced taxi trip data. They use

the fare field logged in the data to infer the probability of path taken by a given trip. Thus

they form a path probability estimation (PPE) approach for estimating the link travel time.

But these methods are computationally expensive and unlikely to be scalable to citywide

data. They also use EM algorithm, which only gives a local optimum and hence is prone to

differences in initial points.

2.2 Route Recommendation

One important problem while planning a travel is to find the best possible route. However

it’s not always intuitive that the shortest distance path will also take the minimum time

to travel. Because more people tray to avail this path due to it’s short distance, causing

high congestion and greater travel time. Therefore, different proposals have been made

for suggesting better routes. Google Maps is arguably one of the most used route recom-

mendation system. They provide several alternate paths in increasing order of travel times.

Google uses crowdsourced location data from the online users who are using their Google

Maps app or web service. Thus they get real time movement of the app users. This helps

them to estimates for link travel times [1]. However several people has raised concerns re-

garding privacy preservation. On the contrary Waze1 takes different approach. Here users

actively report to the traffic community regarding road accidents, road blocks, poor weather

condition etc. Waze then collects this report, analyses and makes suggestions. It also rec-

ommends the fastest route, with crowd sourced annotations of links on the route. However,

1http://www.waze.com
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these systems are based on individuals participation has the requires good infrastructure,

e.g. presence of smartphone, good internet connectivity, higher social responsibility of the

participants, etc, which is may not be available in many cities in developing countries.

Apart from these two popular systems there are other models as well. Chen et al. [13]

returns the route with maximum probability. Where they assign transfer probabilities to

intermediate locations which are significant and then take their product. Finally they return

the route with highest probability. Wei et al. [59] provides a map-free heuristic for con-

structing most popular routes from uncertain trajectories. Given a sequence of locations

and time interval, their method is able to build top k-routes using the uncertain trajectories

given as input which sequentially pass through the locations within the specified time in-

terval. They do this by aggregating such uncertain trajectories in a mutual reinforcement

way i.e uncertain + uncertain→ certain. Luo et al. [29] defines a more frequent than rela-

tion between footmark sequences, which characterize the frequencies of paths, and propose

efficient algorithms for finding time-period based most frequent paths (MFP).

2.3 Correlations in Link Travel Time

In transportation network traffic dynamics evolve in a complex pattern. The behaviour of

traffic in a road segment is correlated to various factors. Sometime any event (e.g parade,

carnival etc.) happening nearby disturbs the traffic pattern in the local region or sometime

natural calamity, earthquake, tsunami have devastated the transportation system of the en-

tire city. Also a sudden change in traffic in any road segment due to road accident may

change the traffic dynamics of the nearby road links. So there are various correlations in

link travel time which needs to be understood.

Therefore, authors have tried to include traffic periodicity from the neighbourhood for

estimating link travel time. Wang et al. [56] uses non-route based approach for travel

time estimation and traffic dynamics interpretation. The authors propose neighbour based

method considering only the neighbouring trips and include traffic dynamics by making

use of traffic periodicity based on recent traffic patterns. Even the type of vehicles which

are running through the road can decide the congestion of the road network. If a road only
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allows public transport vehicles then the congestion type will be different than if the road

allows both public transport and goods carrying large trucks. Because the goods carrying

truck will move in a lower speed compared to the public transport resulting slow traffic flow

in the road. Therefore Quin et al. [40] tries to model the link traffic using the interplay of

multiple vehicle class and their behaviour in the overall link congestion. The authors claim

that, when two classes of vehicles are mixed, each vehicle class influences the overall con-

gestion in the road link depending upon their engine power, vehicle automation levels, etc.

However none of the above methods attempt to infer correlations in link travel time

directly from path travel time. Jenelius et al. [20] separates trip travel times into link travel

times and intersection delays and models correlation between link travel times on different

network links using spatial moving average (SMA) structure. However, they assume that

the correlations are related to externally observable factors, rather trying to infer them from

large scale travel time data [33, 34]. Nie et al. [33] assumes that the link traversal time

is conditional on the state of the preceding link, that is, they assume the state of a link to

have a Markovian property. They think that the state of present link is dependent on the

state of the link traversed right before arriving at its starting node, and independent of the

links traversed prior to that. So only the consecutive links are correlated. But this concept

has been extended by [11], which has assumed that the topological distance (measured by

number of links) between any two correlated links can be upto k, thus extending the idea

of adjacent link dependency.

2.4 Understanding Traffic from Multiple Data Source

Analysing transportation network is not only limited to investigating the transportation data

only. Because various other factors like weather condition, government notifications also

influence traffic. However all these information are broadcast in different channels like

electronic new medium, online social networking (OSN) site etc. Therefore recently au-

thors have focussed on multiple source of information for understanding meaningful traffic

insights. This is a very crucial task as it helps to analyse and infer the reason of traffic dis-

turbance from social media channel and then use that information for further investigation

of the transportation data for finding out a solution and thus create a better travel experience
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for city dwellers.

2.4.1 Using Homogeneous Online Social Network data

Today with the enormous growth of social network and mobile communication, people are

acting as human sensors and sharing their travel experience in real time. Event extraction

from social media data [5,6,43] is relatively robust technology, where authors try to extract

event information from OSN feed. There are also works where researchers are specifically

interested in finding out fruitful traffic insights from the social media channel and then

further predict about it [38, 52]. Pathak et al. [38] shows how data from social network

like facebook can deliver useful urban traffic information using multi-class classification

technique to categorize traffic incidents. Tejaswin et al. [52] uses the spatio-temporal tweet

feed data for traffic incidents clustering and prediction using Random Forest model. Mo et

al. [31] focusses on the social media channel of the traffic police for understanding the road

congestion time, place and proper reasoning using the linguistic dynamic system based on

multi-factor time varying universe.

2.4.2 Computing with Heterogeneous Urban data:

Apart from using the online social network data only, authors have tried to combine other

sensor data as well. Wang et al. [57] extends the traditional sensing paradigm by cou-

pling sensors like GPS, mobile phone, humidity sensor with facebook and twitter, so as to

facilitate real world event information fusion and analysis. Lécué et al. [24] shows how

the severity of a road can be predicted combining heterogeneous, exogenous and raw data

streams. Daly et al. [15] uses the dynamically occurring incidents like traffic accidents,

localized weather conditions, unplanned obstructions from social media to provide user

real time feedback to highlight the cause of the traffic disruption. Rashidi et al. [42] ar-

gues about the transportation aspect of heterogeneous mixture of social media data to infer

various travel attributes. Pan et al. [36] first explores the traffic anomalies in the transporta-

tion data and then infer the reasoning of the anomalous behaviour from the social media

content for further investigation. Finally Wu et al. [60] tries to combine ubiquitous data
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sources, like point-of-interest (POI) from FourSquare, weather data, geo-tagged tweets and

collision records for explaining daily traffic trend at some pre-decided locations by finding

traffic correlation with these external data sources using machine learning technique.





Chapter 3

Link Travel Time Estimation and
Route Recommendation

3.1 Introduction

Estimation of link travel time [44] is a core problem in transportation engineering, with ap-

plications ranging from detection of traffic behaviour and anomalies at different places and

times [35], assessing and improving overall efficiency of transportation systems [44], to

the widespread application of route recommendation for individual users [3], etc. Google

Maps1 provides excellent route recommendation, but relies on users being online for collec-

tion of traffic data; this is not sustainable in many developing countries, since connectivity

is expensive, and not as abundant as in developed countries. Therefore, a more ideal sce-

nario for any recommendation algorithm would be to rely on data collected/released by the

vehicles (and not individuals) plying in the city.

In recent times, several cities around the world have started online taxi hire companies,

such as Uber2, Ola3, etc., which collect route information. Besides, in many cities, the

city administration makes it mandatory for taxi hiring services to log their trip informa-

1http://maps.google.com
2https://www.uber.com/
3https://www.olacabs.com/
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tion. These taxi service organizations are increasingly making their taxi trip data public

(e.g., Uber data4). However, understandably due to various constraints such as privacy

concerns of the driver and the passenger, legal issues, business interests, etc., hardly any

dataset contains complete trajectory information. For example, sometimes trip informa-

tion is anonymized, or only pickup information is provided, or no distance information is

shared, or exact pickup-dropoff information is masked. This trend is more or less common

across taxi trip datasets released from different cities across the world like Porto, Boston,

Chicago, New York, etc.

An important task, therefore, is to devise methods to meaningfully mine and utilize

these increasingly available but incomplete trip datasets. In this work, we specifically take

up this challenge and develop a methodology to tackle the situation where entire trajectory

information is obfuscated. New York City Taxi and Limousine Commission5 has freely

shared vast amounts of data for about all taxi trips made in the city recently. The data

however is incomplete and does not contain routes for trips, but only starting and ending

locations and timestamps along with total distance travelled, fare, etc., for each taxi trip.

We leverage on the huge amount of data provided to derive link level information of a large

portion of links, and then use that for travel time estimation between any two given points.

We believe the basic idea of using vastness of data to reconstruct data that is not provided

is a different outlook as none of the previous travel time estimation algorithms work for

such incomplete data [3, 26, 41, 64]. Note that our approach is different from missing data

imputation approaches in statistics, which focus on substituting parts of data points which

are absent.

In order to solve the problem on this dataset, following steps are undertaken: (a) Re-

construction of the route information from the (source, destination, distance) data, which is

performed by enhancing the data with OSM6 information; (b) From the route information,

estimate the travel time for each individual link7; (c) For any arbitrary route, we predict

the travel time by stitching back the time taken to travel its constituent links; (d) As an

aside, we also find the variance in link travel time, which helps us to estimate the degree

4https://movement.uber.com/cities
5http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
6http://www.openstreetmap.org
7A link is a single segment of a road
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Figure 3.1: System Overview: Data reconstruction with the help of NYC taxi trip data and
OSM data followed by link attribute estimation and application.

of uncertainty attached to a journey; (e) The estimated link attributes (mean, variance) are

further used to build a recommendation system, which can either optimize time, distance,

or certainty. Figure 3.1 shows an overview of the system developed.

Our framework maps 65.6 million taxi trips in Manhattan in 2014 within 0.1 mile error

threshold to unambiguous (unique) paths (section 3.2). The link mean travel time, as well

as its variance, are accordingly estimated using our LSEC method (section 3.3), as the

path travel time is spatially distributed over the constituent links of the paths. Results from

experiments (section 5.4) with link travel time prediction algorithms, show that mean abso-

lute percentage error (MAPE) for predicted link travel times is better by at least 20% than

existing methods. Also, the root mean square error for path variance estimation is within

at most 1.5 minutes on an average, i.e., for an observed path variance of 5 minutes, our es-

timated variance lies within 3.5− 6.5 minutes, confirming the effectiveness of the variance

estimation method. We further develop three route recommendation schemes (section 3.6):

shortest distance (RecDist), minimum expected travel time (RecDur), and minimum vari-

ance or highest certainty route (RecCert); and compare them with Google Maps, Waze and

most frequent path (MFP) [29]. The comparison shows that although distances and travel

times for all the techniques are close, the actual paths proposed are significantly different.
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3.2 Dataset Construction: Assign paths to trips

In this section, we describe the construction of the route dataset that is, assigning a unique

path from the road network to a taxi trip from the NYC dataset. Note that all the given trips

may not be assigned to a unique path as there may be multiple paths with roughly same

distance between two points. However, the presence of huge amount of data ensures even

if a large number of pairs cannot be uniquely mapped, we can still glean out a sizeable

amount of data (route information) with high confidence. These route-annotated data can

then be used to estimate route-travel time described in next section. The detail steps for

route-annotation is described next.

(a) (b)

Figure 3.2: (a) Original pickup, dropoff distribution across Manhattan (b) Constructed
full road network for Manhattan

3.2.1 Dataset

NYC taxi dataset: We obtained this data from the New York City Taxi and Limousine

Commission. For this work we have focused only on Manhattan City and consider only

those trips which start and end inside the Manhattan City itself. After initial data prepro-

cessing, cleaning and filtering, it has 86.1 million valid trips made in Manhattan for the year
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Field Meaning

pickup date time trip start time

dropoff date time trip end time

trip time total trip duration (in sec)

trip distance total distance covered (in mile)

pickup location GPS coordinates

dropoff location GPS coordinates

Table 3.1: Features from taxi trip data used in this work

2014. However the trip data doesn’t provide intermediate route information for any trip. It

provides only the pickup and dropoff coordinates, timestamp along with total trip distance

and duration. We have used only the following features: pickup and dropoff timestamps,

coordinates, trip distance and duration only.

OSM dataset: While road networks are available for many cities, from the city corporation

or state transportation authorities, very often these networks are incomplete or have miss-

ing properties [53]. Following [53], we use data from OpenStreetMap (OSM), which is an

open source collaborative project dedicated to create free and editable map of the world.

We download the OSM data for Manhattan city (longitude range: (−74.02,−73.90) and

latitude range: (40.69, 40.88)) and have created the corresponding road network. Figure

5.1 shows the road network for Manhattan city, which has 14886 nodes and 23884 links.

Next we describe construction of road network from OSM data.

3.2.2 Road Network Construction using OSM

In this section, we describe our road network construction algorithm from OSM data [53],

having various structural elements e.g. node, way, etc. For our map generation we need

two types of elements namely: node and way. A node is a tuple of (longitude, latitude)

and way is an ordered set of referred nodes that represents linear or curved structures in

the map. In OSM data, a way element has tag: ”highway” with different tag value namely

”primary”,”secondary”,”tertiary”, etc., denoting the road type for that way. Similarly if a

way is one directional then it has the tag: ”oneway” and tag value:yes. Following the tech-
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nique used by Toole et al. [53], we use the following steps to construct the road network.

First we filter out all the way element whose ”highway” tag has the values: ”primary”, ”sec-

ondary”, ”tertiary”, ”unclassified”, ”road”, ”living-street” and ”residential” only and create

the filteredWaySet. Second we take union of all way element in the filteredWaySet

and construct the nodeSet. Third we take the union of all the directed links (adjacent or-

dered node-pairs in the way element) in all the way elements from filteredWaySet and

construct the directedLinkSet.

Finally using nodeSet and directedLinkSet, we create the final road network. Figure

5.1-(b) shows the constructed road network for Manhattan City using the above algorithm

and the data from OSM. This road network has 14886 nodes and 23884 links. We note

that the number of nodes can be reduced by just considering junctions of road segments.

However, we keep the superficial (extra) nodes as these help in: (a) capturing the curvature

of curved road segments and (b) increasing the accuracy of mapping trip data to the road

network in next section. We also plot in figure 5.1-(a), the pickup and dropoff locations

on the map to understand the spatial density of trips in Manhattan city. Here white region

denotes that too many trips occurred in those area over the year.

3.2.3 Mapping Taxi Trip data to Road Network

We use proximity based location mapping: to map all the original location to the closest

node (according to Euclidean distance) in the road network. In the subsequent analysis, the

original locations in the trips data, are replaced with the closest node in the road network.

A total of 7028049 locations (resulting from taxi (pickup,dropoff) pairs) were mapped to

14886 nodes in the road network. Figure 3.3 plots the euclidean distance between the orig-

inal (from NYC taxi data) and the mapped locations (from OSM data) (x-axis) against the

cumulative fraction of points (y-axis). This distance measures the error in the mapping pro-

cess. We can see that nearly 99% of 7028049 locations are mapped with an error of only

0.08 mile or less. The superficial (extra) nodes in the road network which capture the cur-

vature of road segments contributed significantly in producing such highly accurate results.
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Figure 3.3: CDF shows 99% taxi OD pairs are mapped to the closest node within an error
threshold of 0.08 mile
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Figure 3.4: CDF shows 76.1% trips are attributed to unique paths within 0.1 mile error
threshold

3.2.4 Distance based Path Attribution

The biggest challenge here is that the path taken through the road network between origin-

destination (OD) pairs is not provided. Recent works [62, 63] use probabilistic models to

estimate the probability of alternative paths being taken. However as mentioned above,

these approaches suffer from many drawbacks, including arriving at negative link travel
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time estimates. In this work, we take an orthogonal approach: distance based path attri-

bution. Our main idea is to filter out trips for which there are multiple paths with very

low error in the total distance travelled. This leaves us with a dataset of trips which can be

attributed to unique paths with low error. This strategy can be especially effective, given

the large number of trips in the dataset. Algorithm 1 describes the steps.

Algorithm 1: Distance to path matching
Require: Road Network RdNet, Trips data TD

1: ODP ← All OD Pairs (TD)

2: for all m ∈ ODP do
3: R← k-shortest paths(m,RdNet)

4: fltR← non-ambiguous paths(R)

5: for all t ∈ trips ODP(m,TD) do
6: {Trips between OD pair m}
7: Path(t)← CDM(t, f ltR)

8: Error(t)← |Dist(Path(t))− TripDist(t)|
9: end for

10: end for
return Path,Error

We generate k-shortest paths between each OD pair using Yen’s k-shortest path algo-

rithm [61], taking k = 50. For each path, we calculate the distance as sum of distances

of the links from road network. The distances of all paths are then clustered into distance

buckets. If multiple paths fall inside same distance bucket for anOD pair then we call them

ambiguous. Step 4 filters out the non-ambiguous paths for a given OD pair (m) and stores it

in fltR. In step 7, the functionCDM(t, f ltR) returns the path which has a distance closest

to the trip distance for trip t. Here closeness is measured using Error as absolute value of

difference in distances. In step 8, Dist(p) gives the distance for path p, and TripDist(t)

gives the trip distance for trip t. The outputs of the algorithm are arrays Path and Error.

Path(t) gives the distance-wise-closest non-ambiguous path for trip t and Error(t) gives

the corresponding error.

We applied the above algorithm for attributing paths to the taxi-trip data filtered to Man-

hattan area. Note that the algorithm attributes paths to all trips, unless the corresponding
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OD pair has no non-ambiguous path. Figure 3.4 plots the cdf for errors (in mile) computed

in the attributed paths. We can see that a large fraction of trips are attributed paths within

an error of 0.1 mile, after which the rise in fraction of trips tapers off and the error in at-

tribution increases. We choose 0.1 mile as the error threshold. 65.6 million trips, out of

total of 86.1 million trips in the Manhattan area, lie within an error threshold of 0.1 miles

(retention of 76.1%). We consider this filtered and path attributed set of trip as our route

annotated data. We use this data for link travel time estimation (sections 3.3) and route

recommendation (section 3.6).

3.2.5 Distance based Path Assignment

After mapping to the road network, each trip in the NYC taxidata contains a pair of origin

and destination nodes, called OD pair. The main problem is to map an OD pair to an

unambiguous path in the road network, upto a given tolerance. The algorithm generates

k-shortest paths between each OD pair using Yen’s k-shortest path algorithm [61], and

clusters the paths into buckets based on distance on the road network using threshold 0.01

miles. Paths mapped to buckets having more than one path are called ambiguous. Trips

in NYC taxi-data also come with logged distances, which are mapped to the closest non-

ambiguous distance bucket. The assumption behind the algorithm is that the unambiguous

paths are present within the k-shortest path. We use k = 50. The algorithm is described

in section 3.2.4 of appendix. We applied the above algorithm for attributing paths to the

NYC taxi-data filtered to Manhattan area. Figure 3.4 plots the CDF of errors, the absolute

difference between the trip distance in the NYC taxi-data and the distance computed on the

attributed paths. We observe that a 76.1% of trips are attributed to unique paths, with error

less than 0.1 mile. We choose 0.1 mile as the error threshold resulting 65.6 million trips, out

of total of 86.1 million trips in the Manhattan area to lie within this error threshold (reten-

tion of 76.1%). We consider this filtered and path attributed set of trips as our ground truth

trip data for link travel time estimation (sections 3.3) and further application (section 3.6).
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ETH (mile) 0.1 0.2 0.3 0.4

(%) of Link
Coverage

NW 84.97 85.71 86.27 86.37

W 87.48 88.28 88.53 88.76

Table 3.2: Variation in link coverage (%) of road the network of Manhattan City with
different error threshold (ETH) (in mile) for Weekends (NW) and Weekdays (W)

3.2.6 Characteristics of Trip Data

The trip dataset derived above is next used to extract link travel time related parameters.

In order to derive link level information from path level information we need to consider

the performance of a set of path travelled. However, for any stochastic method to obtain

accurate values, the set of paths considered needs to follow similar distribution – at least,

the average travel time per unit distance need to be roughly same for all. To ensure that

here we report the link coverage and the hourly statistics of weekend and weekday traffic

for appropriate bucket choice.

Link coverage: Once the paths have been attributed to trips, we measure the link coverage,

which is defined as the fraction of links which are part of attributed paths to at least one of

the trips. Table 3.2 reports the percentage (%) in link coverage for Manhattan areas, as a

function of the error threshold (in mile) used for selecting trips. We see, using error thresh-

old of 0.1 mile, 84.97% and 87.48% links have been covered for weekends and weekdays

respectively.

Temporal Characteristics: We found that the variance within an hour remains minimum

and it shoots up if we consider wider bucket. If we use wider bucket of size 2 to 5 hours,

then the within-bucket variance increases from 12.5% to 58.38%. Hence while calculating

the link travel time, we consider buckets of one hour duration. We find, TDM is low from

midnight to 6:00 am in the morning, gradually increases from 6:00 am towards 10:00 am,

remains stable from 10:00 am to 4:00 pm, and drops gradually there after. However the

trend is slight different for weekends as shown in the figure3.5 where variance in TDM

for late night is higher than weekdays. This indicates how variance in TDM is affected in
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Figure 3.5: Average daily trend of trip duration per mile (TDM) for year 2014 shows spe-
cific stable-rise-stable-fall trend and clear distinction between (a) Weekdays (b) Weekends.

24 hour cycle due to variation of traffic throughout the day. We therefore, consider four

one hour window starting at 6:00 am, 10:00 am, 4:00 pm, 8:00 pm, for the subsequent

experiments shown in sections 5.4 and 3.6.

Number of trips per path: Out of 9.6 million paths which are traversed between 5.3

million OD pairs, 4.5 million paths have a single trip. These paths are discarded while

computing path variance (section 3.3.2), thus losing 47.57% of paths. The presence of

huge data again ensures that even after discarding a large set of data, we are still left with

a sizeable set to calculate variance besides mean link travel time (Table 3.5).

3.3 Methodology: Link Attribute Estimation

In this section, we propose our algorithms for estimating link travel times and variance in

link travel time from start-to-end travel time data for many trips through the road network.

The main challenge is that we do not directly know how the travel times are split across

links of the path. This information is present in an indirect form as paths overlap on certain

links. Hence, all the link travel times have to be inferred jointly. Also, there are two types

of randomness: first is the noise in measurement of path travel times, and second is the

intrinsic variability in the link travel times for each link. In order to minimize the intrinsic
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variability, we bin the entire dataset into one hour buckets and calculate the link travel and

variation time for each link. This is in line with the observation reported in [62].

Let G = (V,E) denote the road network, where V is the set of all nodes which are

the origin and destination points of various trips, E ⊆ V × V is the set of all road links

in the network. We assume a directed graph with e = (v1, v2) implying that traffic can

flow from v1 to v2. A path p is an ordered list of nodes (Vp) such that (vi−1, vi) ∈ E,∀i.
Equivalently, it can also be thought of as a list of links (Ep) such that if ei−1 = (ui−1, vi−1)

and ei = (ui, vi), then ui = vi−1, ∀i = 1, . . . ,M , where M is the total number of links

in the road network. Our processed NYC trips dataset D obtained in section 3.2, can be

described as a collection of paths pi along with trip travel time Ti, ∀i = 1, . . . , N , where

N is the total number of of trips. Note that a given path pi may have multiple trips. Hence,

we can compute the mean travel time T̄p for a path p as T̄p = 1
Np

∑
i:pi=p Ti, where Np

is the number of trips through path p. Similarly, we can compute the total variance Sp in

travel time for path p as: Sp = 1
Np−1

∑
i:pi=p(Ti − T̄p)2. Next, we describe our methods for

probabilistic link travel time and variance estimation.

3.3.1 Link Travel Time Estimation

In order to estimate link travel times, we formulate a probabilistic model for trip travel

times. Let Xk, k = 1, . . . ,M denote the random variables capturing travel times for the kth

link. Note that this model is for weekday/weekend and an hour of the day. Also, let Tp be

the random variable denoting travel time for path p. We formulate the model:∑
k∈p

Xk = Tp + η (3.1)

where, η is a Gaussian noise with mean ε close to 0 and variance σ2. This is a simpli-

fied model, which ignores waiting time at the nodes. Taking expectation w.r.t. all random

variables Xk and noting that xk = E[Xk] and T̄p = EX [Tp]:∑
k∈p

xk = T̄p + ε (3.2)
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We also assume the various trip travel times Ti are due to variation in link travel times Xk.

Hence, the average of trip travel times T̄p for a path p can be used as a plug-in estimate for

EX [Tp].

With this model, and the data for path travel times {T̄1, . . . , T̄N}, we can write the above

equations in a compact form as:

Ax = T̄ + ε1 (3.3)

where x = [x1, . . . , xM ]T , T̄ =
[
T̄1, . . . , T̄N

]T , and 1 is the vector of all ones. AM×N is

a coefficient matrix, where Aik = 1 if ith link is a part of kth path, Aik = 0 otherwise.

Since we are interested in estimating xk such that ε → 0 in the Gaussian noise η, we use

maximum likelihood paradigm to estimate the mean link travel times xk. This leads to the

least squares problem:

x∗ = arg min
x
‖Ax− T̄‖2 (3.4)

We call this the least-square estimate (LSE) for link travel times.

A problem with this formulation is that the optimal mean link travel time estimates x∗k
can be negative. This is because

∑
k∈p xk can be positive, even though the individual xk

are not all positive. Hence, we impose the further constraint that xk ≥ 0,∀k = 1, . . . ,M .

The final estimation problem becomes:

x∗ = argmin
x

‖ Ax̂− T̄ ‖2 s.t x ≥ 0 (3.5)

We call this the least-squares estimation with constraints (LSEC). Note that this is an in-

stance of non-negative least squares problem [51], which is a convex optimization problem,

and can solved using many efficient algorithms. Next we estimate variances in link travel

times.

3.3.2 Variance in Link Travel Time Estimation

The equation 3.1 can be written in a compact form as:

AX = T + η1 (3.6)
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where T = [T1, . . . , TN ]T . Taking co-variance on both sides, and assuming that the noise ε

is independent of T and independent of each other, we get:

AΣXA
T = ΣT + σ2I (3.7)

where, ΣX and ΣT are covariances of X and T, respectively. Unfortunately, both matrices

are very large for our application. Moreover estimating ΣT is a challenge give the dataset.

First we make a simplifying assumption that all components of X and T are inde-

pendent. Hence, ΣX = diag(s) and ΣT = diag(S), where s = [s1, . . . , sM ]T and

S = [S1, . . . , SN ]T are variances of X and T, respectively. The above equation can be

written as ( since (AΣXA
T )i,i =

∑M
k=1 skA

2
i,k and Ai,k = A2

i,k) :

As = S + σ21 (3.8)

Since we are interested in finding s for the minimum variance in the noise, i.e. minimum

σ2, we get the following non-negative least-squared problem:

s∗ = argmin
s
‖ Aŝ− S ‖2 s.t s ≥ 0 (3.9)

Note that the estimation problem is same as the link travel time estimation, except that the

target value is path variance instead of path travel time. We call this method independent

link variance (ILV) estimation. After solving equations 4.4 and 4.8, we compute the pre-

dicted path travel time for path p as: Tp =
∑

x∈p x
∗
k and the variance in path travel time

for path p as: sp =
∑

k∈p s
∗
k, due to independence.

3.4 Experimental Setup

We compare the proposed least squares estimation with constraints (LSEC) method for

estimation of link travel times with two baseline algorithms: (1) the path probability esti-

mation based algorithm (PPE) proposed in [62] and (2) the naive least squares estimation

based algorithm without constraints (LSE).



3.4 Experimental Setup 37

Baseline methods: PPE [62], assumes a linear model for fare in terms of distance and time,

and tries to fit the coefficients using least squares regression. They assume a multinomial

logistic regression model for route probabilities in terms of distance and time, using the

fitted coefficients. Using the path probability, they compute expected travel time, which

is matched to actual travel time for a non-linear least squares fitting. Our second baseline

is basically the naive least squares estimation based algorithm LSE without positivity con-

straints on estimated links as described in Section 3.3, equation (3.4). While PPE needs the

trip duration, distance and fare information, LSE and LSEC need trip duration and distance

along with attributed paths.

One week dataset: Since optimization suggested in [62], uses the Jacobian matrix which

is O(|E|2), PPE cannot be run on the entire road network. Hence, following [62], we select

a smaller region of Manhattan City with 1829 nodes and 2334 road links for baseline com-

parison. Next we construct a smaller taxi trip dataset for running their algorithm. While

the authors have used single week’s data for the year 2010 we have used it for year 2014.

They used the trip data from 3/15/2010 to 3/21/2010 where as we use our path attributed

taxi trip data from 3/15/2014 to 3/21/2014 whose pickup and dropoff fall into test region

and got total 155601 trips for these seven days period.

Experimental procedure: We compared with baseline using one week dataset (section

3.5.1) and validated the performance of our method on the entire 2014 dataset separately

(section 3.5.2). We randomly select (80%) training and (20%) test set data and evaluation

was done on test set data. All the work has been performed on machine having 48 CPU

(Intel(R) Xeon(R) CPU, E5 − 2697 v2 @ 2.70GHz), RAM 256 GB. Distance based path

matching took roughly ∼ 10−3 seconds per trip. For the road network with 23884 link, our

LSEC takes on an average ∼ 0.60 seconds per link for link mean and variance in travel

time estimation.

Evaluation metrics: Let T̄p be the observed path mean time for all the trips made by

the path p and Np be the total number of paths. Also let x̂k be the estimated link mean

travel time for kth link in path p. Hence, estimated mean path time can be calculated as:
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T̂p =
∑

k∈p x̂k. Next for comparing T̄p with T̂p, we define the following metrics:

RMSE =

√∑
p(|T̄p − T̂p|)2

Np

(3.10)

MAPE =
1

Np

∑
p∈P

∣∣∣∣∣ T̄p − T̂pT̄p

∣∣∣∣∣ ∗ 100% (3.11)

Similarly as described above we define the error measurement metrics for path SD es-

timation. Let σp be the observed standard deviation for the pth path and Vp = σ2
p be the

corresponding variance. Also, let V̂p be the estimated variance for path p, Np be the total

number of paths and Sk be the estimated variance for link k. Then V̂p =
∑

k∈p S
2
k . The

equations 3.10, 3.11 are redefined with replacing T̄p by σp and replacing T̂p by
√

V̂p.

3.5 Results: Travel Time Estimation

In this section, we validate the link travel time and variance estimation techniques proposed

in section 3.3 using metrics defined above. In section 3.5.1, we describe results comparing

LSEC with baselines (PPE [62] and LSE) on the one week dataset as described above.

We also report the fraction of links with negative mean travel time. Note that we can only

compare expected route travel times since authors of PPE do not prescribe a method for

calculating standard deviation. In section 3.5.2, we report performance of our methods on

the full dataset for link travel time and link SD estimation.

3.5.1 Baseline Comparison

Table 3.3 shows root mean square error (RMSE) and mean absolute percentage error (MAPE)

for link travel time estimated by LSEC, LSE and PPE for four different time of the day 6:00

am (6), 10:00 am (10), 4:00 pm (16), and 8:00 pm (20). We note that LSEC performs nearly

similar to LSE while it performs much better than PPE, both in terms of RMSE and MAPE.

We observe, RMSE is higher for rush hours 10 and 16 when the average trip duration per
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Hour
PPE LSE LSEC

RMSE
(minute)

MAPE
(%)

RMSE
(minute)

MAPE
(%)

RMSE
(minute)

MAPE
(%)

6 1.56 25.68 1.13 20.14 1.12 19.15
10 3.09 29.25 2.53 22.21 2.26 21.57
16 2.71 30.16 2.29 23.34 2.12 22.26
20 1.76 26.28 1.33 20.43 1.29 20.12

Table 3.3: Comparison of method LSEC with baseline PPE and LSE. LSEC is showing
good progress over PPE in terms of both RMSE and MAPE.

mile (TDM) is higher. While for hour 6 and 20 the error is comparatively low supporting

the TDM trend as discussed earlier in section 3.2.6 (Figure 3.5). The approach proposed in

PPE suffers from several problems. First, linear relationship between fare distance and time

could not be verified for the full one year dataset (they verify it with trip data of seven days

spanned over a very small part of Manhattan). Second, it assumes that probability of fol-

lowing a path is related to the fare, which is not verified for larger city wide dataset. Third,

the approach is computationally very expensive as it maintains probabilities for top-k paths

for all trips, and hence could not be applied to the entire dataset.

Hour 6 10 16 20

(%) of -ve
Link time

PPE 23.73 24.25 27.97 24.29

LSE 12.12 15.81 14.65 13.24

Table 3.4: Comparison of percentage (%) negative link between PPE and LSE. For each
of the hours CDF of LSE is always lower than that of PPE

Effect of negative links: A major drawback of both the baselines is that they have no

mechanism to stop estimating negative link travel times. Table 3.4 reports the percentage

of links with estimated negative link travel times. We note that both LSE and PPE estimate

a significant percentage of negative links, and cannot be used for route recommendations.

We also investigate the correlation between percentage of negative links and the ac-

curacy of travel time prediction. In figure 3.6 we have plotted the CDF of negative links

frequency for different hours of the day for LSE and PPE. We see that the frequency of
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Figure 3.6: Comparison of frequency distribution of estimated negative links for PPE and
LSE for different hours of the day

negative values estimated by PPE (given by solid lines) is more than those of LSE (given

by dotted lines), which correlates with the inferior performance of PPE compared to LSE.

Hence, we conclude that one of the reasons behind the inferior performance of PPE over

LSE (and also LSE over LSEC) is the spurious computation of negative link travel times.

3.5.2 Performance of LSEC on Entire Dataset

Table 3.5 details the performance of LSEC which we discuss one by one. The last column

in the table shows the total trip data available.

Validating average link travel time estimation: We see in table 3.5, for estimating path

time by our LSEC method, MAPE value is within 24% - intrinsic variability in the travel

time data is partially responsible for the error. The undershoot and overshoot of estimation

are roughly in similar proportion. Notice that although the MAPE is slightly worse in the

weekend than the weekdays, the RMSE shows opposite behaviour because the car speed

is higher in weekend (people reach their destination faster). Hence although the percent-

age error is high, the absolute mismatch with respect to time is low. The table also shows

the number of estimated links over Manhattan city - the experiment covers. It is nearly

80% and 78% for weekdays and weekends respectively, clearly signifying the scale of our
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Hour
Day
Type

Path Mean Time Estimation Path Time SD Estimation
TC

MAPE
(%)

RMSE
(min)

PC
(TC>0)

LC
(%)

MAPE
(%)

RMSE
(min)

PC
(TC>1)

LC
(%)

6 W 19.10 1.57 120640 77.06 37.19 0.62 65461 51.75 1434065

10 W 23.00 3.36 372090 79.57 32.17 1.50 199478 50.78 3166472

16 W 23.34 3.37 316246 80.96 31.72 1.43 164231 48.85 2503511

20 W 19.62 2.27 534513 84.61 35.44 0.99 269513 55.34 3639485

6 NW 21.23 1.47 57457 73.56 36.11 0.59 35823 35.12 184571

10 NW 20.10 2.14 221421 78.57 37.33 0.80 102284 47.39 1017649

16 NW 23.68 3.00 229880 80.06 33.60 1.08 102411 42.91 1054417

20 NW 22.51 2.60 228005 81.26 35.20 0.95 125697 43.48 1210975

Table 3.5: Measuring error in estimation of path mean travel time and path standard
deviation (SD) estimation for weekdays (W) and weekends (NW). It also shows hourly
details about Trip Count (TC), Path Count (PC) for (TC > 0 and > 1) during Weekdays
(W) and Weekends (NW) and the corresponding Link Coverage (LC)

experiment.

Validating link variance estimation: Table 3.5 also shows the performance of LSEC for

path SD estimation (via aggregating estimated link SD). Here MAPE is within on an

average 34% and 35% for weekdays (W) and weekends(NW) respectively. This indicates

that the predictions of SD is not as good as link travel time. This can be attributed to the

sparsity of data as in order to calculate variance of a link, a path needs to be traversed mul-

tiple times. We find that such paths are substantially less (column 9 in the table), the value

becomes even smaller if we try to put a threshold of (say) minimum 10 trips to remove

noise. Due to reduction in dataset the link coverage also reduces to around 50% and 40%

in weekdays and weekend respectively.

3.6 Application: Route Recommendation

The huge amount of link level information (both mean travel time and its variance) esti-

mated can be used to recommend routes by simply stitching the links having minimum
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estimated value. The path suggested by minimum variance links denotes the path with less

variability or uncertainty which motivates us to go for certainty based route recommenda-

tion. Commercial route recommendation systems, e.g. Google Maps or Waze, report two

aspects of recommended routes: distance and travel time. Moreover, often there are shorter

distance paths with heavy traffic resulting in more travel time or longer distance paths with

less congestion resulting in lower travel time. Hence, there is no obvious choice. In this

section, we propose a third parameter for recommending paths: uncertainty or intrinsic

variance in path travel times and compare them with existing commercial system.

System RecDist RecDur RecCert

Avg dist (mile) 1.92 (0) 1.99 (0.07) 2.01 (0.09)

Avg dur (min) 12.15 (0.29) 11.86 (0) 12.18 (0.32)

Avg SD 2.80 (0.23) 2.79 (0.22) 2.57 (0)

Avg speed (mile/hr) 9.48 (0.58) 10.06 (0) 9.90 (0.16)

Table 3.6: Effect on speed due to different recommendation system. The value in the
bracket shows how much it deviates from the optimal value

3.6.1 Recommendation Methodology

Given an origin – destination (OD) pair (u, v), RecDist recommends the lowest distance

path between u and v, RecDur recommends the lowest expected travel time path and Rec-

Cert recommends lowest estimated variance path between the same u and v. We note that

for any path p the path travel time Tp can be calculated as sum over the link travel times:

Tp =
∑

ei∈p Tei . This is also the same for the path distance and path variance (due to

independence assumption (ILV) in section 3.3). The link distances are calculated from co-

ordinates in OSM data, whereas the link mean travel times and variances are calculated

using LSEC and ILV methods developed in section 3.3, using the full training taxi trip

dataset. Since the individual links are always positive, hence we use Dijkstra’s shortest

path algorithm [14] to choose shortest duration, distance, or variance path accordingly.

Results: For each OD pair we recommend 3 optimal paths using the three recommen-

dation schemes described above and note down the estimated distance, duration and SD
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for the recommended path and calculate the average speed [62]. In table 3.6 the numbers

in bracket report improvement over recommendation in the category. We see that if user

chooses most certain path (RecCert) then on an average, she needs 0.09 mile more than

the path recommended by RecDist, and she needs 0.32 minutes longer than RecDur. It

also indicates that the average speed of the path recommended by RecCert is only 0.16

mile/hour shorter than that of the average speed of the path suggested by RecDur. Hence,

we conclude that there is not much penalty (on an average) in choosing a more certain path.
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Figure 3.7: Comparison of (a) CDF of path distance difference between RecCert and
Waze, Google Maps (GMap), MFP (b) CDF of path duration difference between RecCert
and Waze, Google Maps (GMap)

3.6.2 Comparison with Popular Route Recommender

In this section we compare our system with other existing commercial systems namely

Google Maps, Waze and also time period-based most frequent path (MFP) [29] approach.

Baselines: Google Maps provides route planning and real time traffic information. Through

Waze, drivers connect to one another and share real time traffic and road info with fellow

drivers and help each other to improve their driving experience. Both Google Maps and

Waze don’t publicly provide their route recommendation algorithm. MFP calculates the



44 Chapter 3 Link Travel Time Prediction

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Jaccard index

C
D

F

 

 

MFP vs RecCert

GMap vs RecCert

(a)

−1 0 1 2
0

0.2

0.4

0.6

0.8

1

Difference (dissimilar path SD)

C
D

F

 

 

MFP vs RecCert

GMap vs RecCert

(b)

Figure 3.8: (a)Path similarity and (b) Dissimilar path variance comparison between
RecCert, Google Maps (GMap) and MFP

path frequency in terms of link frequency and selects the most frequent one.

Experimental setup: To measure the performance of our system against the baselines we

choose Grand Central Terminal (GCT) in Manhattan as our destination and choose top

60 OD pairs from our trip data which have taken the longest time for reaching GCT be-

tween 4:00-5:00 pm in 2014. For each such OD pairs we collected recommended route

information by GoogleMaps (via API) and Waze for a weekday, setting taxi departure time

between same 4:00-5:00 pm. Note that the baseline commercial systems allow us to collect

recommendation information for current and future date only. Next we find the route rec-

ommendation information by RecCert, RecDur and MFP from history data for same test

OD pairs, date and time but for year 2014. For Waze we use the web interface (no API

available) and could get only distance and duration information except the route.

Comparison of distance and duration: In table 3.6 we found, there is not much penalty in

choosing a more certain path using RecCert. Hence in figure 3.7, we comparison our Rec-

Cert algorithms with three baselines Waze, Google Maps and MFP. Figure 3.7-(a) shows

that all the methods predict paths with similar distances as their difference is close to zero,

while Figure 3.7-(b) shows that Google Maps recommends paths with highest travel time,

followed by MFP (which is very close to RecCert), and Waze recommends the fastest paths.
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Comparison of non-overlapping path segments: Figure 3.8-(a) shows CDF of Jaccard

index between paths given by baselines (Google Maps and MFP) and RecCert. Here the

Jaccard similarity is calculated by viewing paths as sets of links. We see that all the three

methods recommend very different paths, thus reaffirming our belief that in many scenarios

there are many different “good” routes between origin and destination. Moreover, we see

that paths given by MFP are more similar to those by RecCert than those given by Google

Maps. Surprisingly, as shown in Figure 3.8-(b), difference in standard deviation between

paths recommended by the three systems is low (despite the links being different). We

see that Google Maps recommends slightly more uncertain paths than MFP and RecCert.

Another interesting observation throughout this section is that MFP and RecCert behave

very similarly while recommending paths in terms of travel time, distance and standard

deviation. One might conjecture that taxi drivers in Manhattan intuitively follow the route

of least variability.

3.7 Conclusion

The primary contribution of this work is to demonstrate a simple yet effective framework,

to calculate mean travel time as well as variance for each link in a map, using LSEC. This

is achieved on a large historical taxi trip dataset, which contains only the end point infor-

mation for each trip. The work shows that using a road network, and a simple concept

of non-ambiguous shortest paths, we can reconstruct routes and estimate travel time and

variance on a city-wide scale, which none of the existing research systems do. We also

demonstrate that the data derived can be effectively used to recommend paths, and thus

introduce the concept of certainty based route recommendation. Our performance vis--vis

commercial systems is also comparable; note that the performance of systems like Google

Maps and Waze is based on real-time data from individual users, while we work on his-

torical (2014) data. Interestingly, we find that the routes followed by our certainty based

scheme are different from what Google Maps is suggesting and are found to be less prone

to any on-road uncertainty. We are perhaps being able to capture alternate paths due to

the scalability of the system, whereby we are able to capture an entire view of the city –

however, this needs further investigation.
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The percentage of links whose mean and standard deviation could be calculated, is

around 80% and 50% respectively. We believe the coverage would increase further if we

work with more data. A simple way to enhance data would be to consider data from all

seven years (2009 - 2015) together. To use the data effectively, we may have to, however,

perform some minor adjustments due to shift in travel time distribution over years, which

would be an immediate future research agenda. Finally, we plan to make the annotated

(with derived route information) NYC taxi data public for future research endeavours.



Chapter 4

Link Covariance Estimation

4.1 Introduction

In any urban setting, congestion on road is almost an unavoidable feature. Moreover, spread

of congestion follows a complex path - congestion at one place may quickly affect nearby

and sometimes even distant zones, causing inconvenience to people. Hence an important

research question is to identify the range of influence of congestion occurring at an area.

More specifically, we may want to know the correlation in traffic pattern between any two

stretches of roads (links) within a city - that is, we would like to derive the covariance ma-

trix of a city road network. Understanding the travel time correlation between the links has

its importance with applications ranging from detection of traffic behaviour and anomalies

at different places and times [35], assessing and improving overall efficiency of transporta-

tion systems [44].

Studies on link travel time corelation assume either correlations in link travel time are

restricted to adjacent links [33, 34] or within a local area [11]. Although, in general, this

may be true but a few instances of long-range correlation normally exist in a city-wide

setting, identification of which may be important for various city-planning related applica-

tions. Hence, a model should not be constrained by the locality of correlation assumption.

Another important criticism regarding the above mentioned models is the inherent assump-

47
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tion that the information regarding link travel time is available - which is not true in practice

due to several privacy and related concerns. However, path level travel information from

city cab hiring services like Uber1 are increasingly getting available. In line with that

spirit, in this work, we use the path attributed taxi trip data from New York City2 for the

year 2014. The dataset provides the taxi trajectory information as well as the total trip time,

but no information regarding the link travel time.

We estimate the average travel time for each individual links from this path attributed

taxi trip data set and then derive the variance in travel time of those links as well as the co-

variance between any two links. Here the challenge is to infer the link covariances from ob-

served path covariances. We solve this problem under the assumption that path travel times

are linear combinations of link travel times and link travel times are distributed according

to multivariate Normal distribution. Unlike existing methods, our method does not assume

any side information or restriction on the link covariance structure. We call this Dependent

Link Variance (DLV) method. In practice, however, there is a need to identify the most

correlated links rather than having information about all possible correlated pair. To locate

the most correlated links, we impose a sparsity constraint on the dependent link variance

model using the sparse inverse covariance estimation method following [17]. A positive

correlation between two links indicates that the traffic change (increase or decrease) in one

link is directly proportional to the traffic change in the other link and vice versa.

The solution of this problem, helps us to achieve the following objectives: First, our

DLV model is able to derive the link covariance resulting in an impressive improvement in

accuracy (12%) of estimation of path variance vis-a-vis a model where link travel time is

thought to be independent. Second, we have been able to estimate travel time correlations

between distant links using our DLV model. Our method has been able to identify several

pairs of links far apart in distance (∼ 1.5 mile) but are highly correlated in terms of travel

time. Third, through sparsification, the set of most positively correlated links identified lie

within an average proximity of∼ 0.14 mile from the most traffic prone locations in the city

– thus reaffirming the correctness of our correlation estimation framework. Fourth, we

are successful in predicting the most affected paths during city events (e.g. parade events

in Manhattan City namely: Pulaski Parade, America’s Parade and St. Patrick’s Parade),

1https://movement.uber.com/cities
2http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
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using the correlation estimation in link travel time. The result shows that the Jaccard Sim-

ilarity between the set of observed and estimated most affected path is ∼ 76.5%. The

success of this model may help travellers to take necessary precaution while route planning

during the time of the event.

4.2 Problem Formulation

Let G = (V,E) denote the road network, where V is the set of all nodes in the road net-

work, E ⊆ V × V is the set of all road links in the network. We assume a directed graph

with e = (v1, v2) implying that traffic can flow from v1 to v2. A path p is an ordered list of

nodes (Vp) such that (vi−1, vi) ∈ E,∀i. Equivalently, it can also be thought of as a list of

links (Ep) such that if ei−1 = (ui−1, vi−1) and ei = (ui, vi), then ui = vi−1,∀i = 1, . . . ,M ,

where M is the total number of links in the road network. The input trips dataset D, is a

collection of paths pi along with trip travel time Ti, ∀i = 1, . . . , N , where N is the total

number of of trips. Note that a given path pi may have multiple trips. Hence, we can com-

pute the mean travel time T̄p for a path p as T̄p = 1
Np

∑
i:pi=p Ti, where Np is the number

of trips through path p. Similarly, we can compute the total variance Sp in travel time for

path p as: Sp = 1
Np−1

∑
i:pi=p(Ti − T̄p)

2. Next, we describe our methods for covariance

estimation in link travel time.

4.2.1 Link Travel Time Estimation

Let Xk, k = 1, . . . ,M denote the random variables capturing travel times for the kth link.

Also, let Tp be the random variable denoting travel time for path p. We can write:∑
k∈p

Xk = Tp + η (4.1)

where, η is a Gaussian noise with mean ε close to 0 and variance σ2. This is a simpli-

fied model, which ignores waiting time at the nodes. Taking expectation w.r.t. all random
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variables Xk and noting that xk = E[Xk] and T̄p = EX [Tp], we formulate∑
k∈p

xk = T̄p + ε (4.2)

With this model, and the data for path travel times {T̄1, . . . , T̄N}, we can write the above

equations in a compact form as

Ax = T̄ + ε1 (4.3)

where x = [x1, . . . , xM ]T , T̄ =
[
T̄1, . . . , T̄N

]T , and 1 is the vector of all ones. AM×N is a

coefficient matrix, where Aik = 1 if ith link is a part of kth path, Aik = 0 otherwise. Since

we are interested in estimating xk such that the mean ε→ 0 in the Gaussian noise η, we use

maximum likelihood paradigm to estimate the mean link travel times xk with the constraint

xk ≥ 0,∀k = 1, . . . ,M and the final estimation problem becomes:

x∗ = argmin
x

‖ Ax̂− T̄ ‖2 s.t x ≥ 0 (4.4)

This is the constrained least-squares estimation problem for estimating the mean.

4.2.2 Link Variance Estimation

The equation 4.1 can be written in a compact form as:

AX = T + η1 (4.5)

where T = [T1, . . . , TN ]T . Taking co-variance on both sides of equation 4.5, and assuming

that the noise η is independent of T and independent of each other, we get:

AΣXA
T = ΣT + σ2I (4.6)

where, ΣX and ΣT are covariances of X and T, respectively and σ2 is the variance in noise.

First we make a simplifying assumption that all components of X and T are un-

correlated. Hence, ΣX = diag(s) and ΣT = diag(S), where s = [s1, . . . , sM ]T and

S = [S1, . . . , SN ]T are variances of X and T, respectively. The above equation can be
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written as ( since (AΣXA
T )i,i =

∑M
k=1 skA

2
i,k and Ai,k = A2

i,k) :

As = S + σ21 (4.7)

Since we are interested in finding s for the minimum variance in the noise, i.e. minimum

σ2, we get the following non-negative least-squared problem:

s∗ = argmin
s
‖ Aŝ− S ‖2 s.t s ≥ 0 (4.8)

Note that the estimation problem is same as the link travel time estimation, except that the

target value is path variance instead of path travel time. We call this method Independent

Link Variance (ILV) estimation.

4.2.3 Covariance Estimation in Linear Models

Traditionally, covariance has been estimated from the direct measurements {x1, . . . , xn}
using the scatter matrix S =

∑n
i=1(xi − x̄)(xi − x̄)T . The covariance matrix becomes

Σ = 1
n−1

S, when the mean or distribution is unknown, and Σ = 1
n
S when xi are assumed to

be Gaussian. For high-dimensional covariance matrices, a common problem is low rank of

the estimated covariance matrix which can be tackled using shrinkage estimators proposed

in [25, 45], and many subsequent works (e.g. multi-target shrinkage [23], and alternative

target matrices [54], etc.). In our case, we have a linear map T of the original random

vector (x) of link travel times. Note that in our case, both x and T are high dimensional,

∼ 2200 and∼ 22000 respectively. To the best of our knowledge, the problem of estimating

covariance matrix of x, Σx from measurements of T has not been tackled before.

Given a ΣT for the path covariance matrix, one can estimate the link covariance ΣX

using a least squares formulation based on equation 4.6, as σ2 → 0:

minimize
ΣX

‖A(ΣX)AT − ΣT‖2
F

subject to ΣX � 0 (4.9)

This problem is an instance of convex semi-definite program (SDP) [7], where the con-

straint ensures semi-definiteness of the link covariance matrix ΣX . However, the semi-
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definite optimization suffers extremely high time complexity. Current SDP solvers utiliz-

ing interior-point methods scale as O(n4.5) or worse [21,47] where n is the number of rows

in semi definite matrix. In order to circumvent the computational difficulties, we make a

simplifying assumption that X follows a multivariate Gaussian distribution. Hence, we

have the following model:

X ∼ N (x̄,Σx)

T |x = Ax (4.10)

Marginalizing over x, we have:

P (T |A, x̄,Σx, σ) = N (Ax̄,AΣxA
T ) (4.11)

Note that the variance of path travel times T in this model turns out to be the same as

the previous model (Eq. 4.6), except the additional variance (σ2I) introduced due to ran-

domness while combining the link covariances, which is eliminated in the current model

(Eq. 4.10). For this model, we can write the log-likelihood function given a trips dataset

{T1, . . . , Tn} as:

L(Σx) =
n∑

i=1

(Ti − T̄ )T (AΣxA
T )−1(Ti − T̄ )

− n ln(|AΣxA
T |) + const.

= Tr(ST (AΣxA
T )−1)− n ln(|AΣxA

T |) + const.

where, ST =
∑n

i=1(Ti − T̄ )(Ti − T̄ )T is the scatter matrix for path travel time and Tr(.)

is the trace function. Also we can write ΣT = 1
n
ST . Next we take the derivative of L(Σx)
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with respect to Σx and set it to zero. The steps are as follows:

d

dΣx

Tr(ST (AΣxA
T )−1)− d

dΣx

n ln(|AΣxA
T |) = 0

d

dΣx

Tr(
1

n
ST (AΣxA

T )−1)− d

dΣx

ln(|AΣxA
T |) = 0

d

dΣx

Tr(ΣT (AΣxA
T )−1)− d

dΣx

ln(|AΣxA
T |) = 0

(Σ−1
x A−1ΣTA

−TΣ−1
x )T − AT (AΣxA

T )−1A = 0

(Σ−1
x A−1ΣTA

−TΣ−1
x )T = AT (AΣxA

T )−1A

Σ−1
x A−1ΣTA

−TΣ−1
x = AT (AΣxA

T )−TA

= AT (AΣxA
T )−TA

= AT (AΣxA
T )−1A

= ATA−TΣ−1
x A−1A

= (A−1A)−TΣ−1
x (A−1A)

= I−T (Σx)−1I

Σ−1
x A−1ΣTA

−TΣ−1
x = Σ−1

x

Σ−1
x A−1ΣTA

−T (Σ−1
x Σx) = (Σ−1

x Σx)

Σ−1
x A−1ΣTA

−T I = I

(ΣxΣ−1
x )A−1ΣTA

−T I = ΣxI

IA−1ΣTA
−T I = ΣxI

Σx = A−1ΣTA
−T

Therefore, we get

Σx = A−1ΣTA
−T (4.12)

However in 4.12, we consider that A is invertible, i.e., A is a square matrix. But in reality

our A is N ×M matrix, where N is total number of paths and M is total number of links,

and so A is not a square matrix. But ATA is a square matrix and by the properties of square

matrix, it should be invertible. So next we try to modify equation 4.12, so as to replace A−1
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with (ATA)−1 and get the final equation. The steps for this modification is as follows:

Σx = A−1ΣTA
−T

= A−1ITΣT IA
−T

= A−1(AA−1)TΣT (AA−1)A−T

= A−1(A−TAT )ΣT (AA−1)A−T

= (A−1A−T )ATΣTA(A−1A−T )

= (ATA)−1ATΣTA(ATA)−1

So we can finally write the modified equation as

Σx = (ATA)−1ATΣTA(ATA)−1 (4.13)

where there is noA−1 terms and equation 4.13 can easily be applied irrespective of whether

A is invertible or not. Therefore, finally we can write:

Σ∗X = arg min
Σx

L(Σx) = (ATA)−1ATΣTA(ATA)−1 (4.14)

Here, we assume that the matrix ATA is invertible. Also, note that the matrix ATA

stores the counts of common paths between links, i.e. (ATA)i,j = number of common

paths between links i and j. Hence, it is expected that ATA is a sparse matrix, and easily

invertible. Also to make sure that the ATA is a full rank matrix for the real data, we add

small λ (10−3) to each diagonal elements of ATA and thus our final equation becomes:

ΣX = (ATA+ λI)−1ATΣTA(ATA+ λI)−1 (4.15)

We call this our Dependent Link Variance (DLV) model.

Estimation of Path Covariance Matrix: In the above derivation, we assume that each

vector Ti carries a simultaneous observation of path travel times for all available paths.

However, in practise, the number of such simultaneous observations are extremely limited.

In general one gets path travel times for a subset of paths at any given time window. Estima-

tion covariance matrix with missing data can be performed in many ways [27]. However,

due to extremely high dimensionality of the path covariance matrix (22K× 22K), we con-
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struct paired data between ith and jth paths as the pairs of path travel times whose starting

times are no further than a threshold (say 30 minutes). Let there be K such paired data-

points, (Tik, Tjk), k = 1, . . . , K for the path-pair (i, j). We compute the (i, j)th entry of

path covariance matrix ΣT (i, j) = 1
K

∑K
k=1(Tik − T̄i)(Tjk − T̄j). While this procedure is

not guaranteed to yield a positive semi-definite matrix, in practise find the resultant matrix

to be PSD.

4.2.4 Sparse Inverse Covariance Estimation:

While the full covariance matrix can be useful in finding correlation between paths, the

problem of finding most important correlations between links becomes important from the

transport planning point of view. Also, many correlations are transitive, i.e. A is correlated

to B and B is correlated to C implies A is correlated to C. This type of correlation can be

avoided by measuring partial correlation, which is given (in the Gaussian case) by the Pre-

cision or inverse correlations matrix. The problem of estimating sparse inverse covariance

matrix has been addressed in various domains, including computational biology [17]. The

sparse inverse covariance matrix W , can be estimated as:

min
W

log |W | − Tr(WΣX)− γ‖W‖1 (4.16)

where ΣX is our estimated non-sparse covariance matrix. Once we estimate the link co-

variance matrix ΣX , we get the estimated path covariance matrix as Σ̂T = AΣXA
T .

4.3 Experimental Setup

Dataset: The path attributed dataset has been constructed with the help of New York City

taxi trip dataset3 provided by the New York City Taxi and Limousine Commission for the

year 2014 and the OpenStreetmap (OSM)4 data as discussed in section 3.2.2. However here

we consider an one month path attributed taxi trip data starting from 18th June 2014 to 18th

3http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
4http://www.openstreetmap.org
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July 2014 around Manhattan mid town (figure 4.4.1). During this one month period, there

were 800626 taxi trips, covering 21132 taxi trajectories, spanning over 2112 road links

(edges) in mid town Manhattan.

Baseline: To compare the performance of our Dependent Link Variance (DLV) (section

4.2.3), we use the Independent Link Variance (ILV) model (section 4.2.2) as the baseline

method where link travel time is thought to be independent.

Procedure and Metric: For the experiment, first we randomly split the trip dataset into

80% training set and 20% testing set. Next using the training set, for a pair of paths, we

consider a time bucket (TW ) of 2 hours and consider all the trips in those paths whose trip

start time is within 2 hours. Thus for each pair of paths we build this pair trip data and

calculate the correlation in the path travel time and build the path covariance matrix ΣT

(section 4.2.3). Using this training set data, we learn our model to estimate the link covari-

ance ΣX using different regularization parameter λ. Once we estimate the covariance ΣX

in link travel time using DLV, we measure it’s performance two ways. First we compare

the performance of DLV for different values of λ. For this we calculate the estimated path

covariance Σ̂T for the 20% test data using our learned ΣX and compare it to the observed

path covariance ΣT in the test data. For measuring the performance of our model, we use

two metrics, MAPE – mean absolute percentage error and RMSE – root mean square error.

We use these two metrics for measuring the performance between the observed and esti-

mated path covariance respectively. Second we compare our DLV method with the baseline

ILV method. However in ILV links are uncorrelated. So we have only the estimated link

variance for the baseline ILV method. Therefore we compare the performance between

DLV and ILV as follows. For this, we calculate the estimated path variance V̂p for the 20%

test data using both DLV and ILV method and compare it to the observed path variance Vp
by calculating the MAPE and RMSE between them.

Lambda (λ) 10 1 10−1 10−2 10−3 10−4

MAPE (%) 25.97 24.05 23.95 23.51 23.44 23.44

RMSE (min) 2.51 2.00 1.87 1.85 1.86 1.86

Table 4.1: Performance of MAPE and RMSE with different values of λ for Dependent
Link Variance Model. Here we compare between observed and estimated path covariance.
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Method MAPE (%) RMSE (min)

ILV 26.03 3.30

DLV 22.84 1.73

Table 4.2: Comparison of MAPE and RMSE between Dependent Link Variance (DLV)
and baseline method Independent Link Variance (ILV) model. Here we compare between
observed and estimated path covariance.

4.4 Result

In this section we measure the performance of our link covariance estimation task. To

compare our result, First: Using both the ILV and DLV models, we find the estimated path

variance and compare with the observed path variance in the test data. Second: We im-

plement the sparse inverse covariance estimation as described in section 4.2.1 (equation

4.16) using our estimated link covariance ΣX (by DLV) and figure out the most correlated

links of the city. We try to justify our prediction of the most positively correlated links, by

plotting them on the global maps, which shows that those predicted links are around the

real world traffic prone zone in mid town Manhattan.
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Figure 4.1: CDF of relative error (%) for Dependent Link Variance (DLV) (λ = 10−3)
and Independent Link Variance (ILV) model
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4.4.1 Baseline Comparison

For DLV model, we run our algorithm (equation 4.15) on the path attributed spatio-temporal

taxi trip data spanning over mid town Manhattan for estimating the link covariance matrix

ΣX for different λ. Next using the link covariance matrix we calculate the estimated path

covariance over the test set and calculate the MAPE and RMSE between the observed and

estimated path variances. In table 4.1 we show the performance of our DLV model for

different regularization parameter λ. We see that for λ = 10−3, the MAPE and RMSE

achieves minimum value. The MAPE value is 23.44% and RMSE in 1.86 minute. Next

we run our baseline ILV method (equation 4.8), on the same spatio temporal dataset. Note

that, due to the assumption in ILV that links are uncorrelated, the ILV method has been

able to estimate link variance only. Finally using these link variances we estimate the path

variance for the same test data and calculate the MAPE and RMSE between the observed

and estimated path variances. Table 4.2 shows that by using DLV, our MAPE has been de-

creased from 26.03% (by ILV) to 22.84% (improvement 12%) and RMSE has gone down

from 3.30 minute (by ILV) to 1.73 minute (improvement ∼ 47%). The reason for such bet-

ter performance in DLV model is due to the assumption that links are correlated and thus

bringing the estimated path variance more closer to the observed path variance as compared

to the baseline uncorrelated ILV model. For a more deeper understanding, we do a CDF

analysis for the absolute relative error between the observed and estimated path on the test

set data, using both DLV and ILV model. In figure 4.1, we see that, using our DLV method,

∼ 99% of the estimated path variances are within an error range of 5%. But for baseline

method ILV,∼ 95% of the estimated path variances are within the same error range. Which

clearly depicts the improvement of DLV method over the ILV method.

4.4.2 Understanding the Link Correlation Network

The estimated ΣX is not sparse and shows correlation between every pair of links – result-

ing in a fully connected link correlation graph. However, an utility of the model is to figure

out the most correlated link set due to city traffic. For this purpose we apply the sparse

inverse covariance estimation [17] (equation 4.16, section 4.2.1) on the estimated link co-

variance (using DLV method) and derive the sparse inverse link covariance network. The
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Figure 4.2: (a) Prediction of most crowded road links in the mid town Manhattan (b) The
annotated map of the experimental region.

experiment has been done on the same spatio-temporal taxi trip data (section 4.3) around

mid town Manhattan City (figure 4.2). The links which are positively correlated in the

network form the candidate correlated set. To measure the goodness of the estimation we

posit that a good estimation would choose links which are within a close proximity of the

actual crowded/traffic prone locations in the experimental region (mid town Manhattan).

Most Affected Links – Ground Truth Preparation: Unfortunately there is no direct traf-

fic survey readily available which mentions about the most crowded/traffic prone locations

in mid town Manhattan. So we manually prepare this ground truth information from dif-

ferent news article and QA site from Internet. The sources are namely: 15 Areas in NYC
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Most Traffic Prone Locations

Herald Square , W 35th Street

Times Square, 7th avenue & 46th - 47th street

Madison square , 34th street 7th avenue

Rockerfeller Center

8th Avenue & W 42nd St

Penn Station

7th Avenue & W 42nd St

Grand Central Station

7th Avenue & W 34th St

Port Authority

Lexington Avenue & E 42nd St

5th Avenue and 23rd Street

Table 4.3: Ground Truth data for the most busiest locations inside the experimental region
– mid town Manhattan.

Predicted Locations
(most crowded)

Nearest Observed Locations
(most crowded)

Distance
(mile)

GCT, 89, East 42nd Street self 0.0
Citi Bike - E 47 St GCT 0.3

230, Park Avenue, GCT 0.2

Stern College Yeshiva University GCT 0.0
481, 8th Avenue Penn Station 0.1

W 34th Street, Penn Station 0.2

33 W 42 St / 7 Ave Port Authority 0.4

W 42 St / 7 Av, West 42nd Street, 7th Avenue & W 42nd St 0.0
336, 8th Avenue, Chelsea, Madison Square Garden 0.2

Herald Square self 0.0

Table 4.4: Comparison between the Predicted and Observed most crowded locations

that are Crowded 24/75, What are the most crowded pedestrian areas in NY?6, What is the

5http://housely.com/15-areas-nyc-crowded-247/
6http://bit.ly/2fD9wdH
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busiest street in manhattan?7, Busiest Intersections in NYC8, etc. Based on the information

available in these websites, we prepare our ground truth for the most congestion prone lo-

cations inside our experimental region. The table 4.3 shows the list of most crowded/traffic

prone region inside mid town Manhattan (figure 4.2). Some of these places are Grand Cen-

tral Station (GCT), Penn Station, Port Authority, etc. The first two are train stations and the

third is a Bus Terminal. Some of the other crowded places are RockerFellar Center, Times

Square, Herald Square, 5th, 7th, 8th avenue, Lexington avenue, etc.

Comparison With Ground Truth Links: After applying the sparse inverse covariance

estimation [17] on our estimated ΣX , we plot the correlated links in the global map. Figure

4.2-(a) shows the plot on the road network of the experimental region. The links in red are

correlated to each other as obtained from sparse inverse covariance estimation. The links in

grey colour denote the non correlated region. Also figure 4.2-(b) shows the road network

with annotation of location names. The two figures together provide a visual clue to gauge

the traffic prone locations of correlated links that our system has been able to predict.

Table 4.4 shows the performance of prediction with respect to its proximity to the most

traffic prone locations. The first column shows the predicted traffic prone link locations

while the second column denotes the nearest ground truth crowded/traffic prone links.

which justify how close our result is to the actual congested locations. We see that our

predicted most correlated link locations GCT, 89, East 42nd Street, Herald Square (table

4.4) directly map with the ground truth traffic prone locations (table 4.3) at Grand Central

Station (GCT) and Herald Square. We also see that link locations at Citi Bike - E 47 St,

230, Park Avenue, Stern College Yeshiva University are very close to the observed crowded

locations Grand Central Terminal, within a range of ∼ 0.2 mile. We also see that 481, 8th

Avenue, 34th Street are also near to the Penn Station – one of the busiest railway stations

in Manhattan (within 0.3 mile). Also the 336, 8th Avenue, Chelsea is actually close to

Madison Square Garden (within ∼ 0.3 mile), a place in Manhattan famous for organizing

various events and programs. To conclude, it is observed that our sparse inverse covariance

estimation method has actually predicted most correlated links within an average distance

of ∼ 0.14 mile from the most congested locations of the region.

7http://bit.ly/2kOvpUC
8http://bit.ly/2eHBekq
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Figure 4.3: CDF of distance (mile) between correlated links for positive (pos), negative
(neg) and all (tot) correlations

Understanding Long Distance Correlated Links: To understand, how good our method

has been able to capture long distance correlations, we plot the CDF of inter link dis-

tance for the positive and negative correlated links separately. For two correlated links,

we measure their intermediate distances by measuring the euclidean distance between the

mid points of the two correlated links. Figure 4.3 shows, for ∼ 30% positively correlated

links (in red), the inter link distance is more than 1.0 mile. However, we see that ∼ 20%

negatively correlated links (in green) are less than 0.5 mile apart. Thus we see both long

range as well short range link correlations exist. Therefore, the interesting phenomenon is

that sometimes nearby links are actually negatively correlated, i.e, congestion at one point

may lead to relatively free road link nearby!

Event Name Time Location JS (%)

Pulaski Parade 5th Oct, 2014 From 39th St to 56th St 78.0

America’s Parade 11th Nov, 2014 From 26th St to 52nd St 76.76

St. Patrick’s Parade 17th Mar, 2014 From 44th St to 79th St 74.75

Table 4.5: Parade event details and the Jaccard Similarity (JS) between the estimated and
ground truth most affected paths
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4.5 Prediction of Most Affected Paths

We validate our estimation of link covariance by predicting the most affected paths during

localized city events. We obtain the ground truth list of the most affected paths during those

events from our path attributed trip data. Also using the past trip data before the events, we

estimate the covariance in link travel time in the locality of the events and estimate the path

variance of all the paths which has been traversed during the event. Finally we measure

the similarity between these two lists to confirm the success of the prediction of the most

affected paths.

Experimental Procedure: We choose three parade events namely: Pulaski Day Parade,

America’s Parade and St. Patrick’s Day Parade9 in 2014. The table 4.5 shows the time

and venue of these events. First we find out the list of most affected paths from our path

attributed trip data during these parades. We consider all the paths traversed within the

locality of the parade venue. Next we calculate the average path travel time for all these

paths from the past 2 weeks trips before the said event. We find the list of paths whose

travel time has been deviated most from their average path travel time during the event

and create the ground truth path list. Finally, using our DLV method, we calculate the

covariance ΣX in link travel time using all the trip data within the past 2 weeks trip data

(excluding the event day) around the event location. Once we estimate the link covari-

ance, we find the path variance of all the paths. At last, we take the top-k paths having

highest predicted path variance and compare it with our ground truth list of most affected

paths.

Performance: The third column in table 4.5 shows the performance of our prediction of

the most affected paths. For each of the three parade events we predict the top 200 most

affected paths and compare with the ground truth list of top 200 most affected paths. We

see that for Parade Pulaski, the Jaccard Similarity is 78% between these two path lists. For

America’s Parade and St Patrick Parade, the similarity score is 76.76% and 74.75% respec-

tively. These results show how good our DLV method is in estimating the link covariance,

9http://www.mustseenewyork.com/parades.html
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which results in the good estimation of path variance during city events and helps to predict

the most affected paths.

4.6 Conclusion

The primary contribution of this work is to demonstrate a simple yet generic framework,

to calculate covariance in link travel time using Dependent Link Variance (DLV) model.

This is achieved using the path attributed taxi trip dataset, which contains only the path

and the trip travel time. Our model has been able to estimate link covariance, resulting in

better estimation of path variance (improvement by 12%) as compared to the model with

independent link assumption. Our sparse inverse link covariance estimation captures the

most correlated links, which are in close vicinity of the congestion region. We are perhaps

the first to identify the long distance link correlations and find out that ∼ 30% positively

correlated links are more than 1.0 mile apart.
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Mining Twitter and Taxi Data for
Predicting Taxi Pickup Hotspots

5.1 Introduction

In large cities taxi services normally maintain hotspots; these are either city-specified taxi

stands or certain spots which have evolved over time. The knowledge of hotspots helps

daily/experienced commuters to quickly and easily avail taxi service. Such hotspots may

get severely disturbed during a road blockage (e.g. closure due to maintenance) around that

area whereby taxis dynamically build new hotspots. These new hotspots may be far away

from older hotspots, hence causing inconvenience to the commuters as well as resulting in

loss of business and time of taxi drivers. A service which can predict the new hotspots and

accordingly suggest its users to the most convenient new hotspot would be of tremendous

value to both experienced and new commuters.

In order for the scheme to be successful certain conditions need to be fulfilled. First,

one needs an automatic technique to identify such events causing the change in hotspots.

In order to predict (change in) hotspots, one needs historical information of hotspots, not

only the location but also their strength - that is how many pick-up has been done from

these hotspots. Luckily nowadays information of such events widely get publicized in so-

65
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cial media. Therefore, we need to develop a scheme to identify them from the million other

non-relevant information and accurately pinpoint the events, correct location. Secondly,

various transportation datasets from different cities across the world like, Porto, Boston,

Chicago, New York, etc., are made public either by the city authority or by taxi hiring

company (e.g. Uber1) from which hotspot learning is becoming possible.

In this work, we concentrate our study on New York City. This is because both disrup-

tion information as well as taxi hotspot information are available for this region. Moreover,

on studying, it is found that there is significant ‘movement of hotspots’ during any dis-

turbance. The New York City Department of Transportation (twitter handle: NYC DOT)

regularly post tweets about various events in New York, out of which road, bridge closure

is also announced. The New York City Taxi and Limousine Commission routinely releases

information regarding trips of yellow taxi, their pick-up and drop-off points from which

one can calculate the hotspots in the city. Thirdly, the impact of such road closure activity

on taxi-hotspot movement in New York is generally poignant (figure 5.1 illustrates an ex-

ample). Figure 5.1-(a) shows a tweet posted by the NY C DOT regarding an road closure

incident at Brooklyn Bridge from 23rd May, 2016 to 22nd June, 2016 from 7 am to 5 pm.

Figure 5.1-(b) shows the average taxi pickup counts around the activity location (purple

triangle in figure) from the past two weeks taxi trip data before the road closure incident

takes place. The Regular Taxi Pickup Hotspot (RTPH) shows that the average pickup count

around the location, before the road blocking activity occurs, varies between 0-75. The

figure 5.1-(c) shows the Event Specific Taxi Pickup Hotspots (ESTPH). It depicts that, here

also the total pickup count varies between 0-75 on the event day. But a close look at the

two picture shows the difference in heat-map and indicates in the change of taxi pickup

hotspot. Two regular hotspots in the upper middle zone in figure 5.1-(b) have shifted right

on the event day figure 5.1-(c). One would also find similar changes in the bottom right

zone of figure 5.1-(b),(c). Also a regular hotspot in the extreme left middle zone in figure

5.1-(b) is vanished completely in figure 5.1-(c). This clearly supports our claim about the

hotspot relocation.

Summing up, we present a two step methodology to tackle this problem of finding taxi

pickup hotspots by analysing posts from Online Social Network (OSN). We have used two

1https://movement.uber.com/cities
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Figure 5.1: (a) Tweet notifying lane closure activity in Brooklyn Bridge. Heatmap show-
ing (b) Regular Taxi Pickup Hotspot (RTPH) before and (c) Event Specific Taxi Pickup
Hotspot (ESTPH) after road closure activity around Brooklyn Bridge (purple triangle).

datasets: (1) the tweets posted by New York City Department of Transportation (twitter

handle: NY C DOT 2) for the year 2015 for inferring the social cue and (2) the New York

2https://twitter.com/NYC DOT
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Figure 5.2: Two-step process architecture showing relevant information extraction
followed by learning taxi pickup hotspot

City Taxi cab data3 for the year 2015. Our two step process includes two broad task: (a)

Natural Language Processing (NLP) task for information extraction and (b) Map-based

task for hotspot prediction during road closure activity using the extracted information.

Figure 5.2 depicts the overall model architecture of our two-step process. In the first step,

we present method for NLP tasks, classify eventful tweets, followed by extraction of mean-

ingful information on imminent traffic disturbances by using the notification tweet posted

by NY C DOT . After comparing the road closure incidents between, the year 2015 and

2016, we observe that among all the road closure locations,∼ 40.47% (section 5.2.2) event

locations are repeated across years. Second we go for Map-based task where using the

extracted information, we try to predict the taxi pickup hotspot around the activity location

using the New York City Taxi cab data.

Finally, we summarize the key points of our works as follows:

• We show the method to learn the taxi pickup hotspots combining the online and of-

fline data source (section 5.3, 5.5) using a two step process.

3http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
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Location
Birth of NH

(%)
Death of OH

(%)
minimum shift

(mile)

Battery Park 33 4 0.104

Brooklyn Bridge 0 11 0.105

Manhattan Bridge 82 0 0.000

Williamsburg Bridge 0 37 0.103

WillAve Bridge 0 0 0.000

QueensBoro Bridge 0 41 0.102

Roosevelt Bridge 11 19 0.105

Table 5.1: Hotspot relocation details showing birth of new hotspot (NH) and death of old
hotspot (OH) in %. It also shows the minimum shift (in mile) of old hotspot to new hotspot.

• Our approach is successfully classifying the relevant and non-relevant traffic tweet

with an average accuracy of ∼94.55%, precision ∼0.945 and recall ∼0.945 (section

5.4.1).

• Following the classification, we have successfully extracted date-time and location

information from ∼ 80% of relevant tweet (section 5.4.2).

• In section 5.6 we show how fair we are doing in predicting the pickup hotspot. It

shows that our average relative absolute error (RAE) is only ∼13.96% and root rel-

ative squared error is ∼22.33% for locations with higher number of road closure

incidents.

• Finally we see that our predicted taxi pickup locations are within an average radius

of only 0.011 mile from the original pickup hotspots (section 5.6.3).

5.2 Importance and Feasibility of the Problem

The problem of understanding the taxi pickup hotspot relocation, using road closure event

notifications from social networking sites, has it’s own importance. Because, by tackling

this problem, the urban commuters as well as the taxi drivers will be greatly benefited.
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5.2.1 Importance of the Problem

In urban travel life, there are certain places, from where taxi drivers pickup passengers reg-

ularly. We define these locations as regular taxi pickup hotspot (RTPH), if the pickup count

is greater than a threshold, as seen in figure 5.1-(b). For this analysis, the minimum taxi

pickup threshold is set to 3. All the regular passengers know about these hotspots from their

experiences. But whenever any road closure incident occurs, the taxi drivers has to change

their regular travel route. This results in the change of the RTPH. We have the following

three general observations:

Death of Old Hotspot: Here, some of the old hotspots no longer remain as hotspots, as

the passenger pickup count drops significantly in those places. In figure 5.1-(c), some of

the old hotspots become obsolete, due to road closure activity at Brooklyn Bridge, com-

pared to figure 5.1-(b). This trend is also occurring in other places of New York City. After

analysing the tweets posted by NYC DOT in section 5.3, table 5.1 shows that, QueensBoro

Bridge and Williamsburg Bridge suffer from the highest death of old hotspots, 41% and

37% respectively.

Birth of New Hotspot: As a side effect of the road closure incident, new hotspots also ap-

pear in the locality, where previously no passenger pickup was done – birth of new hotspot.

In figure 5.1-(c), some new event specific taxi pickup hotspots (ESTPH) have come up

around Brooklyn Bridge, where previously no hotspots were there, as seen in figure 5.1-

(b). This phenomenon is happening in other locations of New York City as well, where

such road closing activity occurs. The first column of table 5.1 also states that Manhattan

Bridge (82%) and Battery Park (33%) got the most number of new hotspots due to road

closure events.

Hotspot Relocation: The third column of the table also shows the minimum shift (in mile)

of an old hotspot to a new hotspot for each of these locations due to such road blocking

activity. The minimum shift is reported as ∼ 0.104 mile. This shows, at the arrival of road

closure events, at least how far the hotspots move from its usual places.
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Year #Incidents #Location

2015 367 67

2016 417 42

Table 5.2: Total number of incidents and closure locations for year 2015 and 2016

5.2.2 Feasibility of the Solution

Once the road activity location names are extracted from the tweets (section 5.3) for both

the year 2015 and 2016, the following general observations have been made:

Total incidents: Table 5.2 reports 367 and 417 road closure incidents in New York City

for year 2015 and 2016 respectively. These incidents are spanned over 67 locations in 2015

and 42 locations in 2016.

Affected region and overlap: To understand their geographical spreading, the coordinates

of the incident locations are plotted on the global map. The figure 5.3 interprets that major-

ity of the incident locations are densely spread over Manhattan City. But rest are sparsely

located over Bronx, Brooklyn and Queens. The analysis also finds that there is 40.47%

repetition in incident locations between these two years. This is even clearly visible in the

figure 5.3. For Manhattan City, the geographic regions for the road closure incidents are

very similar in 2015 and 2016. However for Bronx, Queens and Brooklyn, we see that the

incidents occur in few new locations. This certainly tells that, these repeated road activities

are mainly affecting Manhattan City.

Location Type: Next we focus on the type of locations which are the victim of these

road closure incidents. The word-cloud in figure 5.4 shows that majority of the loca-

tions are mainly bridges in and around Manhattan City. Some of the major locations are

GrandStreetBridge (GrandStBr), BrooklynBridge (BrooklynBr), BatteryParkUnderPass,

BeltParkway (BeltPky), etc.
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(a) (b)

Figure 5.3: Distribution of road closure event locations in New York city for year (a) 2015
(b) 2016. It shows major locations are distributed mainly in Manhattan city with good
overlap across years.
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Figure 5.4: Word cloud showing which are the top locations suffering from most frequent
road closure incidents in New York city for year (a) 2015 (b) 2016
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Year Duration Count

2015 25/12/2014 to 12/12/2015 2981

2016 4/1/2016 to 12/12/2016 2966

Total 5947

Table 5.3: Twitter dataset for road activity information inference for year 2015 and 2016.

5.3 Tweet Acquisition and Preprocessing

Our system for predicting hotspots for taxi-pickups has two major components:

• Automatically inferring information about road-closure incidents from social media

(Twitter) data.

• Analysing and predicting traffic hotspots from traffic data.

In this section, we describe the first part of the two. Section 5.5 discuss about the sec-

ond. Now we explain the source of social media data and describe classification of relevant

tweets, while section 5.3.2 describes extraction of details of road closure from the relevant

tweets.

5.3.1 Tweet data-source and classification

Twitter data-source: The NYC Department of Transportation tweets regularly about the

traffic conditions in New York City from their official twitter handle NY C DOT 4. They

post early notifications for various road closure activity across the city. We have crawled

their twitter timeline for year 2015 and 2016 using twitter REST API5. Table 5.3 shows

that 2015 dataset contains tweet feed from 25th Dec 2014 to 12th Dec 2015. For 2016, the

dataset is from 4th Jan 2016 to 12th Dec 2016. The total number of tweets for 2015 and

2016 are 2981 and 2966 respectively.

4https://twitter.com/NYC DOT
5https://dev.twitter.com/rest/public
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Tweet classsification: We use standard techniques for classification of relevant tweets. We

assume that tfi = {fi1, fi2, . . . , fiN} is the tweet-feature vector for ith tweet, where fik
denotes the kth feature value for ith tweet. We describe the features used in section 5.4.1.

Let Ci ∈ {0, 1} denote the class label capturing whether ith tweet is relevant or not. Here

by relevant, we mean one containing information about road closures. Our final objective

is, to classify a given unseen tweet as relevant or not. In summary our input, outputs are as

follows:

• Input: A fixed set of tuples having tweet-feature vector and corresponding class

labels [(tf1, C1), (tf2, C2), . . . , (tfM , CM)]

• Output: A binary classification model CR : tf → C where CR classifies the tweet

as relevant or not.

We solve this binary classification problem using four different machine learning tech-

niques, (1) Support Vector Machines (SVM), (2) Naive Bayes, (3) Random Forests, and

(4) Bagging, implemented in Weka [19]. We discuss the details implementation and results

in section 5.4.

5.3.2 Inferring Road Closure Information

After identifying relevant tweets we proceed to extract three pieces of information about

the particular road closure announcement: (1) Location, (2) Time and (3) Date.

Extracting Closure Location: To extract the location name, POS tagger is used for fil-

tering the singular and proper noun. The hashtags are also considered, which explicitly

contain the location names. First we normalize the tweet text to remove the Twitter specific

encoding and obtain the tweets in English and proceed for information extraction. The de-

tails are as follows: (1) First, we perform parts of speech (POS) tagging for the tweet and

select only the words having NNP6 tag, giving us first set of candidate words. (2) All the

6proper and singular noun
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hashtags are filtered which are used for mentioning the name of the event locations, giving

us second set of candidate words. Combining these two candidate sets, our final set of

potential candidates is generated for location information extraction. (3) Finally, we query

the candidate words to find the list of global coordinates (latitude,longitude) which these

words might represent using python geopy library and choose only those which fall inside

New York City.

Extracting Time: The primary challenge while extracting date, time information from rel-

evant tweet is the diverse ways in which people use date, time information in their tweets.

First all the text, which are succeeded by am or pm, are extracted using the regular expres-

sion: ∗(am|pm)∗. But a major challenge is to map the time information to the correspond-

ing date information. This is critical for event happening over multiple days or multiple

times during a day. To overcome the first challenge we use regular expression based rules

to filter out date, time information from other numeric and alphanumeric strings. To over-

thrown the second bottleneck, we also mark the position of the occurrence of the date, time

information and arrive at the mapping based on relative position of the date and time.

Extracting Date: To identify the date information we check for absolute mention and rel-

ative mention of the date. Example of relative mention will be tomorrow, today and the

shorter form for these words. We use the regular expression

“tomorrow|tmrw|yesterday|tonight|today”

for this task. If a relative reference for date is found then the date for the event is calculated

using the posting time of the tweet. We also take the help of conjunction words. These

words help to identify the duration of the event and draws relation between different dates

and time. Types of conjunction words used in our regular expression are

“through|thru|to|between|btn|&|and|−”

. Finally, in the next section, we combine these extracted knowledge with the transportation

data for predicting taxi pickup hotspot during road blocking events.
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KW Date Time Day

2015 0.237 0.114 0.107 0.019

2016 0.262 0.235 0.301 0.040

Table 5.4: Information gain analysis for feature selection – Key Words (KW), Date, Time
and Day for tweet classification

Acc(%) P R F-Score ROC

SMO 92.82 0.925 0.928 0.921 0.767

RF 93.85 0.936 0.939 0.936 0.927

BG 93.86 0.938 0.939 0.938 0.930
NB 93.09 0.931 0.931 0.931 0.930

Table 5.5: Tweet classification performance: Accuracy (Acc), Precision (P) and Recall
(R) for the year 2015.

5.4 Results: Tweet Mining

5.4.1 Tweet Classification

The first step for our information extraction task was to classify the tweets as relevant

(informative) or non-relevant (non-informative). Because out of all the tweets posted by

NY C DOT only ∼ 14.08% tweets were relevant.

Ground Truth Preparation: The original tweets were not labelled as relevant or non-

relevant. So 2 person manually annotate them as relevant and non-relevant. The kappa

value for inter annotator agreement between them is 0.76. Next we move on to feature

selection task for tweet classification.

Feature Selection for Classification: The relevant tweets contain four key patterns, which

helps to correctly classify them. These key features are as follows:

• Key Words: For all the tweets, word frequency distribution analysis is done for both

relevant and non-relevant tweets separately, after normalizing them (removing stop

words followed by applying stemming). Figure 5.5(a)-(b) show clear distinction in
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Acc(%) P R F-Score ROC

SMO 94.97 0.951 0.950 0.950 0.915

RF 94.94 0.948 0.949 0.948 0.970

BG 95.24 0.951 0.952 0.951 0.958
NB 94.97 0.951 0.950 0.950 0.972

Table 5.6: Tweet classification performance: Accuracy (Acc), Precision (P) and Recall
(R) for the year 2016.

word pattern for the relevant and non-relevant post and motivates us for using the

top-20 key words as one of our feature.

• Date: As it’s a notification regarding an upcoming incident, they always mention

about the date of the event, which makes the tweet distinct from the non-informative

one.

• Time: These road activities are also specific to a particular time say from 10 : 00 am

to 3 : 00 pm. This adds more value to the tweet and helps us in correctly identifying

them.

• Name of the Day: Finally along with date and time, the day of the week has also

been mentioned separately which is also added in the feature list.

We use these four features for training our classifier. The analysis of information gain of

the features, in table 5.4, shows Key Words (KW), Time, Date have the highest information

gain value and supports our choice of feature list.

Accuracy of classifiers: After generating the data-matrix with above mentioned features,

we trained different classifiers using it. The classifiers were implemented using Weka [19].

We report results for the four best classifiers: (1) Sequential Minimization Optimization

(SMO) [39], (2) Random Forest (RF) [9], (3) Bagging (BG) [8] and (4) Naive Bayes (NB)

classifiers. For SMO, polynomial kernel of degree=3 is used and for Bagging, reduced

error pruning tree (REPTree) is used with bag size of 100. Tables 5.5 and 5.6 show the

classification accuracy, using 10−fold cross validation, for tweets of year 2015 and 2016,

respectively. Since, we are trying to retrieve all the relevant tweets, therefore our main
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Figure 5.5: Word cloud showing the words used most frequently in the tweet posted by
NY C DOT for (a) relevant (b) non-relevant

Information
Type

Success Rate (%)
2015 2016

Date-Time Extraction 84.7 88.34

Location Extraction 73.23 72.1

Table 5.7: Information extraction success rate from the relevant tweets for year 2015 and
2016

objective is to build a high recall system. We see for both 2015 and 2016 tweets, Bagging

gives the highest average precision ∼0.945, recall ∼0.945 and accuracy values ∼94.55%,

while other models perform comparably.

5.4.2 Information Extraction Result

After classifying the relevant tweets, next we move on to extract the date, time and loca-

tion information from each relevant tweet. We use the metric success rate, defined as %

of relevant tweets from which date, time and location names are extracted successfully, for
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measuring the quality of information extraction. Table 5.7 shows that we are able to extract

the date, time information from 84.7% and 88% relevant tweets for year 2015 and 2016

respectively. However in case of location extraction our success rate is around 73.23% and

72.1% for year 2015 and 2016 respectively. The low success rate is due to image based

notifications, which we are not processing, or name ambiguity – different shorter name of

the same location.

5.5 Predicting Taxi Pickup Hotspots

Through tweet mining, we see that most of the incident locations are near bridges. However

these bridges are one of the primary means for interconnection between different cities and

islands in New York. So road closures at bridges forces the taxi driver to take a detour and

use other bridge to bypass the closure. This changes the regular travel trajectory, resulting

in the change of regular passenger pickup points as shown in figure 5.1(b)-(c) in section

5.1. This motivates us to go for second part of this two-step work i.e. learning of taxi

hiring locations during such road closure incidents. Because even if all these road closure

incidents are planned and have been notified early by the government, the urban commuters

might not always get the impact of it.

If a particular road segment is blocked, the taxi driver has to deviate from their regular

travel route, resulting in the change of the pickup patterns around the incident locations

and thus creating inconveniences for the urban people. We tackle this problem using the

following objective:

Given multiple instances of road closure incidents in the

same location, can we predict the taxi pickup hotspots for a new incident occurring there?

We pose this as a supervised learning problem where first we identify useful features for

each incident location and train our model. Next for a new incident occurring there, we

predict the taxi pickup count for all the neighbouring regions around the incident location

and identify the hotspot.
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Problem Formulation: Assume that at location l, N road closure events {e1, e2, . . . eN}
have occurred at times {t1, t2, . . . , tN} respectively. Given this information we want to

predict the taxi pickup hotspot around the event location l for a new event. To solve this

problem, first we consider a grid G of size k × k in the neighbourhood centring the lo-

cation. For each grid cell g ∈ G, we select list of features F and create a feature vector

vg = {fg1, fg2, . . . , fgk} using transportation data, where fgi denotes the ith feature value

for grid cell g. We have the pickup count yg for grid cell g that denotes the total number of

pickups that occurred when the road-closure incident happened at location l at time t. Next

combining all the feature vector we build our feature matrix A = [v1, v2, . . . , vN ]T and tar-

get vector y = [y1, y2, . . . , yN ]T . Finally, we apply different supervised learning technique,

Support Vector Regression, Random Forest, etc., implemented in Weka [19], for learning

the predictive model to estimate y. We discuss about all the feature selection and learning

result in details in section 5.6.

5.5.1 Feature Engineering

One of the main challenges is to come up with appropriate features for the regression task.

This is especially true since for a given location, we do not have a large number of repeat-

ing events. Hence we had to select a small set of important features. Here we provide the

list of features used with explanations:

• LCD: As already discussed, to predict the pickup hotspot near an incident, we cre-

ate a grid around the incident location. The coordinates (lat,lon) of these locations

(LCD) are included in the feature list.

• PHN: We include the pickup history of neighbourhood (PHN) in our feature set as

the total pickup counts for the past W days that occurred during the same time period

at location l.

• TOD: To find the correlation of number of pickup count, with different time of the

day (TOD), we plot the yearly trip count distribution for different hour of the day for

the year 2015. Figure 5.6 (a),(b) show that taxi trip count follows a periodic nature
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SVR LR RF BG
Cor RAE RRSE Cor RAE RRSE Cor RAE RRSE Cor RAE RRSE

Battery Park 0.98 13.90 22.05 0.98 14.95 22.02 0.98 11.30 18.69 0.98 12.11 19.76

Manhattan Br 0.97 16.87 26.03 0.97 14.41 24.28 0.97 15.31 22.67 0.965 16.82 26.32

Brooklyn Br 0.93 23.03 37.89 0.93 24.26 37.44 0.97 17.06 24.83 0.96 17.97 27.23

Roosevelt BR 0.97 13.90 25.24 0.97 14.41 25.81 0.97 12.18 23.13 0.97 19.12 25.58

QueensBoro Br 0.98 14.05 21.84 0.97 14.31 24.28 0.96 17.46 28.78 0.95 19.40 33.46

WillsBurg Br 0.93 28.31 36.78 0.93 28.62 37.63 0.87 33.68 48.67 0.87 34.03 49.88

WillAve Br 0.74 35.53 61.80 0.79 44.32 61.33 0.77 42.63 64.66 0.79 41.45 61.44

Table 5.8: Result showing hotspot learning by different prediction model– Support Vector
Regression (SVR), Logistic Regression (LR), Random Forest (RF), Bagging (BG) where
Correlation Value (Cor) ranges between (0,1) and relative absolute error (RAE) and root
relative squared error (RRSE) are in percentage (%).

throughout the day (weekdays and weekends). From midnight, trip count starts de-

creasing till morning and then it starts rising and hits the peak at 8 am and continues

till midnight. Following this observation we include TOD in our feature list.

• DOW: Next we focus to find the effect of different day of the week (DOW) over trip

count. Figure 5.6(c) shows that the total number of trip count per day increases from

Monday to Saturday, then drops at Sunday and again rises on Monday and the cycle

continues. This motivates us to consider DOW as one of our feature.

• DFL: We assume that if any road closure activity happens at a location then as an

immediate effect, it disrupts the traffic dynamics of the closer neighbourhood more

than the far out region. So distance from location (DFL) becomes an useful criterion

in this regard and get placed in the feature set.

5.6 Results: Taxi Pickup Hotspots

In this section, we describe results of experiments for automatically predicting the taxi

pickup hotspots. Section 5.6.1 describes the input dataset and grid structure. Section 5.6.2

reports accuracy of taxi pickup prediction, while section 5.6.3 discusses distance of pre-

dicted hotspots from actual ones.
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5.6.1 Experimental Setup

Input Taxi Data: For the transportation data, the New York City (NYC) Taxi data for the

year 2015 has been used. This dataset is made public by NYC Taxi and Limousine Com-

mission7. They provide the data for all yellow taxi trips made in NYC since 2009. However

we have used this data for the year 2015 only. After initial data processing, cleaning and

filtering it has ∼ 163 million taxi trip data for year 2015. The key fields of the datasets

summarized in Table 5.9.

Field Meaning

pickup date-time trip start time

dropoff date-time trip end time

pickup location GPS coordinate

dropoff location GPS coordinate

Table 5.9: Fields showing different attributes from New York City taxi trip dataset for
learning pickup hotspot

.

Local Grid: Once road closure locations have been identified, we go for a grid based

approach for learning taxi pickup hotspot following the idea of Tejaswin et. al. [52]. A

key difference is that they build the grid globally over entire city for classifying each grid,

whether any events, accidents will occur or not. Instead, we use the idea of localized grid

around the road closure locations and estimate the pickup count in these grids during the

event. For each location we take a square region of size 2 × 2 sq. miles centring the lo-

cation. Next we break the region in size of 0.2 × 0.2 sq. miles. Now we move on to the

hotspot learning task as discussed in section 5.5. For each grid location we build the feature

matrix A and the target vector y and learn our model. After, estimating the pickup count

for each cell, we apply minimum pickup count threshold for labelling each cell as hotspot

or not. In this work, our minimum pickup count threshold is set to 3.

7http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
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Figure 5.6: Distribution of trip count at different hours of the day for (a) Weekday (b)
Weekend (c) Weekly.

5.6.2 Predicting Taxi Pickup

After we select the features, next we build our feature vector vg as a collection of related

features as vg = {LCDg, PHNg, TODg, DOWg, DFLg} for each neighbouring region.

Next we build our feature matrix A and target vector y as discussed in section 5.5 and

apply different learning algorithm for predicting the pickup count in the neighbouring lo-

cations. To measure the accuracy of our learning system, we calculate the Relative Absolute

Error (RAE) and Root Relative Squared Error (RRSE). If for ith observation, the predicted

value is ŷi and the observed value is yi then RAE and RRSE are calculated as follows:

RAE =

∑N
i=i |ŷi − yi|∑N
i=i |ȳi − yi|

∗ 100 (5.1)
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RRSE =

√∑N
i=i(ŷi − yi)2∑N
i=i(ȳi − yi)2

∗ 100 (5.2)

Finally RAE and RRSE are multiplied with 100 to set the scale in 0 − 100. Here, the

values are normalized by how much y differs from it’s mean value.

For our learning methodology we have used Weka [19] and have applied different su-

pervised learning technique. However we report only the top four technique which are

giving the best result namely (SVR) [48], [50], Random Forest [9], Bagging [8] and Linear

Regression. Here, in SVR, we have used polynomial kernel with degree 3. For Bagging,

we use reduced error pruning tree (REPTree) with bag size of 100. Also due to the smaller

number of data size, we have used 10−fold cross validation technique to measure the per-

formance of different models. We have applied this technique on all the seven major inci-

dent locations for predicting the taxi pickup count in the neighbouring regions. Table 5.8

shows the performance of the learning technique on these locations. We see that Random

Forest (RF) and SVR are giving the most promising result. The table shows that Random

Forest (RF) gives good result for Battery Park, Manhattan Bridge, Brooklyn Bridge and

Roosevelt Bridge compared to the other three model. Here the average correlation score

between the observed and the predicted value is 0.975%. Whereas the average RAE is

∼ 13.96%, RRSE is ∼ 22.33% for these four locations. On the other hand, for Queens-

Boro Bridge, SVR is giving comparatively better result compared to Random Forest. Here

the average correlation between the observed and the predicted is 0.98, RAE is 14% and

RRSE is 21.84%. But for Williamsburg Bridge and Wills Avenue Bridge the result is not

that good where average correlation is only 0.835. The reason for such weak performance

of the model is due to the smaller data size as comparatively fewer number of road closures

incidents occurs in these places.

5.6.3 Distance of Predicted Hotspots

Once we estimate the taxi pickup count during a new road closure event at a location, we

apply minimum pickup threshold, Th = 3, and labels them as hotspot or not. Thus we obtain

our predicted taxi pickup hotspots. Next we measure the similarity between the predicted

taxi pickup hotspots with the ground truth hotspots during an event. The second column of
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Location
Similarity

(%)
Avg Distance
Error (mile)

Battery Park 40 0.042

Brooklyn Bridge 79 0.013

Williamsburg Bridge 93 0.004

WillAve Bridge 100 0.000

QueensBoro Bridge 87 0.011

Roosevelt Bridge 64 0.001

Table 5.10: Comparison of Predicted Taxi Pickup Hotspot against the original hotspots.

table 5.10 shows the location similarity of the predicted event specific taxi pickup hotspot

(ESTPH) with the original ESTPH. We see that WillAve Bridge and Williamsburg Bridge

get the highest similarity, 100% and 93% respectively. The third column shows, the aver-

age distance error (in mile) between the predicted ESTPH and the original ESTPH. We see,

that the average distance error is only ∼ 0.011 mile. This shows, how close our predicted

ESTPHs are to the original ESTPHs, assuring the success of the hotspot prediction. Thus

we see that, our model is predicting the event specific taxi pickup hotspots, which are very

close to the actual one.

5.7 Conclusion

The contribution of this work is manifold. Here, we have been able to capture the taxi

pickup hotspot relocation due to road closure events, by analysing the event notification in

the online social network and taxi transportation data. Perhaps we are the first to to un-

derstand the pickup hotspot relocation using social network and past road closure trends

from transportation network. A novel two-step process is proposed for predicting the taxi

pickup hotspot from the traffic notifications posted on twitter. In the first step the relevant

tweets are classified with average 94.55% accuracy, ∼ 0.945 precision and ∼ 0.945 recall

(Table 5.5 and 5.6). In the second step, we proceed for predicting the taxi hiring hotspots

leveraging the inferred knowledge base and past pickup trend during road closure. Our su-

pervised learning technique achieves an average ∼ 13.96% root absolute error (RAE) and
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∼ 22.33% root relative squared error (RRSE) using Random Forest technique for locations

with higher number of road blocking incidents. The predicted hotspots are also within an

average radius of only 0.011 mile from the actual hotspots. This shows, how close the pre-

dicted hotspots are to the original hotspots. The prediction has the potential of suggesting

the experienced as well as new comers in the city, about the possible taxi pickup hotspots

if any new road closure events occur at a place, based upon their past experience.
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Conclusion

In this chapter, we summarize the main contributions of the thesis and outline our achieve-

ments in comparison to the objectives set up in the introductory chapter. Finally, we wrap

up by pointing out some of the possible future directions of research that have been opened

up by this thesis.

6.1 Summary of the contributions

In this thesis, our contributions are three-fold: (a) estimation of link travel time and its

variance from large scale end-point trip data, which provide a measure of path reliability in

a transportation network; (b) covariance estimation of link travel durations from covariance

of path travel durations, which allows for an understanding of how traffic in the links are

correlated with each other; (c) prediction of taxi pickup hotspots during road-link closure

incidents by mining Twitter and New York City taxi data, which helps in deciphering the

dynamics of taxi pickup hotspots during man-made urban events.

Estimation of link travel time and its variance

We investigate the problem of estimating link travel time and variance in link travel

time for any two given points from incomplete end-to-end data. Next, we build a route

87
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recommendation system using the estimated link attribute.

• Recently, New York city Taxi and Limousine Commission1 has freely shared vast

amounts of data for about all taxi trips made in New York city, during 2014. The

dataset provides the starting and ending locations and timestamps along with total

distance travelled, fare, etc., for each trip; but does not include routes taken by the

taxi. Our framework maps 65.6 million taxi trips, recorded in Manhattan during

2014, to unambiguous paths, within 0.1 mile error threshold.

• The mean travel time along with its variance are accordingly estimated. Results from

experiments with link travel time prediction algorithms show that mean absolute per-

centage error (MAPE) for predicted link travel times is better by at least 20% than

existing methods. Also, the root mean square error for path variances estimation is

within at most 1.5 minute on an average, i.e., for an observed path variance of 5

minutes, our estimated variance lies within 3.5 − 6.5 minutes, confirming the effec-

tiveness of our variance estimation method.

• We also demonstrate that the estimated link travel time and variance can be effec-

tively used to recommend paths, thereby introducing the concept of certainty based

route recommendation. The performance of our route recommendation system is

also comparable to commercial systems. Note that the performance of systems like

Google Maps and Waze is based on real-time data from individual users, while we

work on historical (2014) data. Interestingly, we find that the routes followed by our

certainty based scheme are different from routes suggested by Google Maps, and are

also less prone to on-road uncertainties. We are perhaps being able to suggest alter-

nate paths due to the scalability of our system, which enables us to capture a holistic

view of the city − however, this claim requires further investigation.

1http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
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Estimation of link covariance

We move on to estimate link covariance in travel time for understanding link-link cor-

relations, and their types – positive or negative. The main motivation is that during an event

in the city, it is crucial to assess individual links to understand how the traffic in one link is

affecting another, which in turn influences the overall traffic dynamics.

• Here we estimate covariance between link travel durations given the covariance val-

ues for path travel durations. We call this our Dependence Link Variance (DLV)

model where we assume that traffic in one link has correlation with traffic in another

link. Results from experiments show that the DLV method is better by at least 12%

than the Independent Link Variance (ILV) method, which is based on the assumption

that there is no link correlation. Result shows that the predicted links are within an

average error radius of ∼ 0.2 mile from the original traffic prone links.

• Our sparse inverse link covariance estimation captures the most correlated links,

which are in close vicinity to the congested region. Ours is, to the best of our

knowledge, the first work to identify long distance link correlations. We observe

that ∼ 30% positively correlated links are more than 1.0 mile apart.

Prediction of taxi pickup hotspots during road closure incidents

Finally, we study how traffic behaviour changes around a closed link, using the help of

transportation data and the traffic feed from online social networking sites. Perhaps we are

the first to study relocations of taxi pickup hotspots, as an impact of road link disruptions.

• A novel two-step process is proposed for predicting relocation of taxi pickup hotspots

using traffic notifications posted on Twitter. In the first step, the relevant tweets are

classified with an average of 94.55% accuracy,∼ 0.945 precision, and∼ 0.945 recall.

• In the second step, we predict taxi hiring hotspots leveraging upon the inferred

knowledge base and past pickup trends during road closure. Our supervised learning

technique achieves an average of∼ 13.96% root absolute error (RAE) and∼ 22.33%

root relative squared error (RRSE) using Random Forest technique for locations with

higher number of road blocking incidents.
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• The predicted hotspots are within an average radius of only 0.011 mile from the actual

hotspots. Such an accurate prediction mechanism has the potential of suggesting

possible pickup hotspots to experienced commuters as well as new-comers in the city.

6.2 Directions of future work

In this final section, we outline a few out of the many possible directions of future research

that have been opened up by this thesis. One direction could be to investigate the link cor-

relations during various types of global events such as earthquakes, snowfall, hurricanes,

etc., in a city wide scale. This will help in understanding the resilience of the transportation

network of the entire city during extreme conditions, which would enable city authorities

to effectively plan evacuation, sending of emergency logistics, medical aid, etc., in a more

efficient way.

Another line of research could be to investigate passengers’ mobility patterns and drivers’

travel patterns during road-link disruptions. Since such events increase congestion in the

neighbouring road network, better understanding of such dynamics enable micro-level traf-

fic management.
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Appendix A

Publications from the Thesis

Publications from the work presented in the thesis: The publications are listed in chrono-

logical order with comments in parenthesis.

1. Sankarshan Mridha, Sayan Ghosh, Robin Singh, Sourangshu Bhattacharya and Niloy

Ganguly. “Mining Twitter and Taxi Data for Predicting Taxi Pickup Hotspots”, ac-

cepted in the IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM), Sydney, Australia 2017. (This study is presented in

Chapter 5)
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